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Background Selection. Background selection (BGS) reduces di-
versity locally in a genome by a process in which deleterious
mutations are continuously pruned from the population, effec-
tively reducing the number of genes from which future genera-
tions can be sampled. The strength of BGS is determined by the
rate at which deleterious mutations enter the population, U, the
recombination rate, R, and the strength of selection, s. If 7
denotes the neutral diversity in the genome and if x is the di-
versity in a locus experiencing BGS, then the reduction in di-
versity is given by

l—ex v
7'[()_ P s+R

(equation 6.24 in ref. 1).

We will assume a constant per-nucleotide deleterious mutation
rate and recombination. Then, the rates U and R are both
functions of the locus lengths, U =uL and R =rL, where u is the
per-nucleotide deleterious rate and r denotes the per-nucleotide
pair recombination rate.

Comparing diversity inside with outside the regions of low
diversity, we are interested in the relative reduction, which can be
caused by changes to the selection rate, mutation rate, or re-
combination rate as factors of fy, fs, and fg, respectively. The
relative reduction can, thus, be expressed as

JuxU
eXp(_fsx s+fr ><R>

ex —U -
p s+R

Although all of the parameters in these equations are unknown,
we do have some knowledge of their general order of magnitude
or can choose conservative values to increase the relative reduc-
tion in diversity explainable by BGS.

BGS is strongest when selection is weak, but when s is very
small, we expect the evolution to be nearly neutral. After s ap-
proaches 1/Ne, we do not expect any BGS effects at all. Because
Ne is on the order of 10,000-100,000, a lower limit on s is
1074-1073. We consider both s =10~° and s = 10~ and allow the
selection inside the low-diversity regions to be one-tenth of the
outside to make BGS stronger there.

We do not have recombination maps for most of the species
considered, but from the human map, we know that the mean
recombination rate on the X chromosome in the regions not
showing reduced diversity is around 1.5 cm/Mb and that differ-
ence between the recombination rate inside and outside the
reduced regions is less than a factor of two; therefore, we use
fr=0.5.

We have very little information about what the deleterious
mutation rate is, but we can use the mean human mutation rate,
estimated to be 1.2x 1078 per generation (2), to explore various
possibilities. If we use 1.2x 1078, it would amount to assuming
that 100% of mutations are under weak negative selection. By
multiplying it with a number d between zero and one, we can
interpret this number as the fraction of the loci that we believe
are under selection. In Fig. S6, the columns correspond to dif-
ferent choices of d from 1% to 10% combined with different
choices for s.
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The rows in Fig. S6 correspond to different choices of fy
varying from 1 to 10 (therefore, the combination of d=0.1 and
fu =10 at the bottom right of Fig. S6 amounts to assuming that
all sites within the low=diversity regions are under selection)
combined with different choices for f;, with f; =1.0 for no dif-
ference in the selection strength inside and outside of the low-
diversity regions and f; =0.1 setting the selection inside the re-
gions an order of magnitude lower. Fig. S64 shows the reduction
in diversity compared with a neutral z( and the relative diversity
of inside to outside of the low-diversity regions. In Fig. S6B, the
dashed red line indicates 20%.

In the most extreme cases, we see a reduction in diversity of
about 20% of the diversity within the low-diversity regions
compared with outside but only in the cases where 100% of the
nucleotides within regions are under selection. In the cases where
50% of the nucleotides are under selection within the regions,
compared with 5% outside, the regions still retain about 50% of
the diversity seen outside the regions.

Simulation of Sweeps. To assess the potential effect of hard and
soft sweeps on diversity on the X chromosome, we performed a
large number of simulations of a Wright-Fisher model exploring
combinations of selection coefficients (s), effective population
sizes (N), and frequencies of the selected variant at the onset of
selection (f). We compute the time to the most recent common
ancestor (TMRCA) along two recombining sequences and use
this as a proxy for nucleotide diversity.

To simulate a selective sweep, we first sample frequency tra-
jectories of a variant selected by s. We do this using rejection
sampling (rejecting trajectories where the selected variant does
not go to fixation). Trajectories for hard sweeps begin at 1 and
proceed to 2N X 3/4 by repeated binomial sampling with prob-
ability parameter

Nmut
Nmut + (N_Nmut) X (1 _S)’

where N, is the number of selected variants in the previous
generation. Trajectories for soft sweeps begin with an initial
frequency f of the selected variant and are prepended with a
trajectory from 1 to f x 2N x 3/4 representing variant frequency
before the onset of the selection.

For each trajectory, we then consider a sample of two se-
quences representing 10 cm in length (equivalent to 10 Mb as-
suming a recombination rate of 1 cm/Mb). Because the effect of a
sweep on flanking diversity is expected to be symmetric, we put
the selected variant at the 5-end position. To compute the
TMRCA along the two sequences, we simulate backward the
coalescence with recombination in discrete generations, allowing
multiple mergers but only one recombination event per lineage
in each generation.

Given a recombination event, the sequence downstream of the
recombination point will become unlinked from the sweep with a
probability equal to the frequency of chromosomes in the pop-
ulation not linked to the variant. A recombination event may
similarly cause unlinked sequence fragments to again become
linked to the selected variant with a probability equal to the
frequency of chromosomes carrying the variant. Lineages that
carry the selected variant can only share an immediate ancestor
with other lineages that also carry this variant.

The simulation proceeds until all sequence segments separated
by recombination events have found a most recent common
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ancestor. For each combination of parameters s, N, and f, we
perform 1,000 simulations, and the mean TMRCA along the
10 Mb is computed in bins of 10 kb (Fig. S7).
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Fig. S1. The SNP quality score. (A) The SNP score in the variant call format files of each chromosome. (B) The SNP score of total autosomes and X chromosomes.
The boxplots show the 95% confidence intervals calculated with 1,000 times bootstrapping replicates sampled from 1-Mb windows.
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Fig. S2. Comparison of reduction in diversity between pairs of species. Heat maps of the correlation of the diversity ratio between two species and the
physical distance from genes for the autosomes, the X chromosome, and the diversity ratio of X chromosomes to autosomes. The red color suggests a steeper
relationship, with distance for the species indicated on the y axis; a blue color suggests a steeper relationship for the species on the x axis. NC, Nigeria—
Cameroon.
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Fig. S3. The diversity pattern and site frequency spectrum of an autosome. The z and the proportions of singletons along (A) chromosome 7 and
(B) chromosome 8, which have comparable chromosome size with X chromosomes. Windows with reduced diversity are identified from the lower z than 20%
of the mean of each chromosome and denoted as black bars. NC, Nigeria-Cameroon.
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Fig. S5. Comparison between low-diversity windows and the rest of the X chromosome. (A) The Dxy values are divergence estimates between each species

and human references (hg18). (B) The Dxy values of the Pan genus were normalized by the number of generations between each species to humans based on
an assumption that a diversity-reducing process has been constantly operated since TMRCA. (C) The Tajima’s D values. (D) The Fst values were calculated from
the pairs of the Nigeria—Cameroon (NC) chimpanzee, Eastern chimpanzee, Central chimpanzee, and Western chimpanzee and the pair of Sumatran orangutan
and Bornean orangutan. (E) The human recombination rate. The lower-diversity windows are identified from 7 less than 20% of chromosomal average. The
P values shown above each pair of bar plots were calculated by one-tailed bootstrapping test with 10,000 replicates.
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Fig. S6. The reduction in diversity caused by BGS. (A) The level of diversity compared with neutral diversity inside and outside the regions of interest and
(B) the relative diversity inside and outside the regions of reduced diversity for various combinations of selection strengths and fractions of nucleotides under
selection.
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Fig. S7. Simulation results for strong sweep. Time to TMRCA as a function of genetic distance to selected variant is shown for combinations of s (right) and
frequency of variant before onset of selection (top). Note that a frequency of zero represents hard sweeps. Each subplot is based on 1,000 independent
simulations. Horizontal black dashed lines show expected TMRCA without selection. Red dashed lines show 75% and 25% reductions in TMRCA. The Ne is set to
(A) 10,000 and (B) 50,000.
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Fig. S8. The signature of selective sweeps on the flanking sequences of ampliconic regions. The X chromosome was divided into three regions: ampliconic
regions (yellow), flanking regions (100 kb or 1 Mb in size; red), and the rest of X chromosomes (cyan). The bar plots show (A) z in the ampliconic regions and the
rest, (B) the proportion of singleton polymorphisms in the flanking regions and the rest, and (C) the population differentiation estimated from the flanking
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bar plot shows the proportion of low-diversity windows identified from 7 less than 20% of X-chromosomal average in the flanking regions (200 kb to 1 Mb in
size) and the rest. The bonobo and the Nigeria-Cameroon (NC) chimpanzee do not have a low-diversity window in both of two categories, because these two
species have only one low-diversity window, which is entirely ampliconic. The significance levels shown above each pair of bar plots were calculated by one-
tailed Fisher’s exact tests (ns denotes P > 0.10). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; *P < 0.10.
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Table S1. The information on taxa used in this study

Common name Scientific name No. of males No. of females
Human Homo sapiens 9 0
Bonobo Pan paniscus 2 11
Central chimpanzee Pan troglodytes troglodytes 1 3
Eastern chimpanzee Pan troglodytes schweinfurthii 2 4
Western chimpanzee Pan troglodytes verus 4 1
Nigeria—Cameroon chimpanzee Pan troglodytes ellioti 4 6
Eastern lowland gorilla Gorilla beringei graueri 2 1
Western lowland gorilla Gorilla gorilla gorilla 4 23
Sumatran orangutan Pongo abelii 1 4
Bornean orangutan Pongo pygmaeus 1 4
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Nam et al. www.pnas.org/cgi/content/short/1419306112
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