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1. Balancing Selection for Arbitrary Dominance and
Selection Coefficients
For arbitrary dominance the fitnesses of the diploids in the
population are

wOO=OO = 1 [S1]

wBD=OO = ð1+ hbsbÞð1− hdsdÞ= 1+ hbsb − hdsd − hbsbhdsd [S2]

wBD=BD = ð1+ sbÞð1− sdÞ= 1+ sb − sd − sbsd. [S3]

The change in frequency of a BD haplotype at frequency pt at
time t due to selection can be derived,

pt+1 = p2t log
�
wBD=BD

wpop

�
+ ptqtlog

�
wBD=OO

wpop

�
. [S4]

Using a series expansion in p and taking the continuous time
limit, this becomes a differential equation describing the dynam-
ics of the frequency of the BD haplotype, p, due to selection

SðpÞ= ðhbsb − hdsdÞp+ ðsb − 3hbsb − sd + 3hdsdÞp2
+ ð−sb + 2hbsb + sd − 2hdsdÞp3, [S5]

which is valid for small p, although also qualitatively correct for p∼ 1.
We can approximate Eq. S5 with the assumption sb � sd � 1,

giving

SðpÞ≈ sbp− sdp2 + sdp3. [S6]

The first term reflects selection on heterozygotes with fitness ∼sb
that occur with probability ∼p, the second term reflects selection
on homozygotes with fitness ∼−sb that occur with probability
∼p2, and the third term comes from a decrease in population
mean fitness at higher frequencies of BD. This cubic equation is
the origin of the shape of the selection curve in Fig. 2. Because
pp � 1 when sb � sd, the cubic term can be ignored as it is smaller
than the other terms by a factor of ∼ pp. The cubic term, however, is
important if one enters a regime in which Nsd K 1; however, this
regime is not considered in the paper as it is biologically implausible
for most populations.
If we wish to use Eq. S5 to derive an equilibrium frequency for

arbitrary dominance and selection coefficients, we find

pp =
hdsd − hbsb + hbsbhdsd

sb − 2hbsb − sd + 2hdsd − sbsd + 2hbsbhdsd
. [S7]

2. Drift to Extinction from Equilibrium No Recombination
2.1. Strong Selection, Weak Drift Regime (α> 1). In the absence of
recombination, the rate of extinction depends on two things: the
strength of selection [SðpÞ] pushing the BD haplotype toward
equilibrium p*, and the variance in frequency due to drift [DðpÞ]
that enables the BD haplotype to fluctuate to extinction against
selection. Under these two effects, the frequency of the BD
haplotype, p, is governed by the stochastic equation

δp≈ SðpÞδt+ η
ffiffiffiffiffiffiffiffi
Dδt

p
[S8]

with SðpÞ≈ sbp− sdp2 + sdp3 and where DðpÞ= pð1− pÞ=N is the
variance from drift and η is Gaussian distributed noise with zero
mean and unit variance. In the long time limit, the probability
density ρðpjt, p0Þ generated by Eq. S8, which describes the likeli-
hood of observing a BD haplotype at frequency p after time t,
given that it started at p0, has weights at p= 0 and p= 1 only
(which must sum to unity). What this means for the BD haplo-
type is that after a long enough time, it must eventually fluctuate
to extinction or fixation. In our particular case, because sb � sd,
the probability of fluctuating to extinction is far larger than that
of fluctuating to fixation.
Before this time, however, the probability density must move

from being concentrated at p= p0 (where it all started) to being
concentrated at p= 0 (extinction). We want to estimate how quickly
this process happens. Consider starting all of the probability density
at p= pp. Initially, this probability density spreads out a small
amount around pp, due to drift. However, because of strong
selection, it remains sharply peaked around p= pp and reaches a
selection−drift steady state: Its shape does not change, but it
begins to decay (i.e., its amplitude decays) at some characteristic
rate λ such that ρðpjt, p0Þ≈ expð−λtÞ. The rate, λ, is small because
we are in the limit of strong selection, and fluctuating to ex-
tinction is improbable. Our goal here is to estimate λ, which
determines the rate at which BD haplotypes go extinct.
To do this, we consider the stochastic equation for δp from Eq.

S8. For changes in frequency δp such that δp=p � 1, both SðpÞ
(selection) and DðpÞ (drift) can be assumed to be constant, and
Eq. S8 reduces exactly to standard diffusion. The solution for
probability density in this case is therefore a Gaussian over δp,

ρðδpjtÞdðδpÞ= dðδpÞffiffiffiffiffiffiffiffiffiffi
2πDt

p exp

"
−
ðδp− StÞ2

2Dt

#
. [S9]

This makes sense: The mean change in frequency is St, which is
the change that would have been expected without drift, whereas
the variance around this grows linearly in time Dt, with a co-
efficient that is exactly the variance introduced by the drift term.
Multiplying out the quadratic and exponentiating the constant
out front, this can be written as

ρðδpjtÞ= 1ffiffiffiffiffi
2π

p exp
�
β−

β

2

�t
τ
+
τ

t

�
−
lnðt=βτÞ

2

�
[S10]

where

τ=
δp
S

and β=
Sδp
D

. [S11]

Writing the density in this way is particularly useful because one
can straightforwardly see when selection dominates or when drift
dominates. The parameter β determines which of the two is most
important: when jβj � 1, selection dominates, whereas for jβj � 1,
drift dominates. One way of interpreting β is as a ratio of two
timescales,

β=
time  for  drift  to  change  frequency  by  δp

time  or  selection  to  change  frequency  by  δp

=

	
δp2


D
�

ðδp=SÞ =
Sδp
D

. [S12]
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If the timescale for selection to change the frequency by δp is
much faster than that for drift (large β), then selection drives the
dynamics. The reverse is true for small β in which drift drives the
dynamics. Focusing on the case of strong selection and consid-
ering Eq. S10, one can see that when β � 1, the lnðt=βτÞ term is
small compared with the other two; thus it can be ignored. The
log density then becomes

ln  ρðδpjtÞ≈ β−
β

2

�t
τ
+
τ

t

�
. [S13]

In our specific case, we are interested in the BD haplotype fluc-
tuating from p= pp to p= 0 (i.e., negative δp) in the presence of a
positive selection (S) pushing the BD haplotype upward toward
p= pp. This means that we are interested in the case of δp< 0 and
S> 0. Considering the expressions for τ and β, one can see that
such a case corresponds to both β< 0 and τ< 0. One can see from
Eq. S13 that the probability density is sharply peaked at t= jτj,
regardless of the sign of β. This somewhat counterintuitive result
means the following: When selection is strong (jβj � 1), if the
BD haplotype moves against the flow of selection, driven purely
by fluctuations, then the path it takes will be similar to the path it
would have taken if it had moved with the flow of selection [a
result similar to that found by Maruyama (1)]. The key thing to
note, however, is that when selection is strong, then the BD
haplotype is very unlikely to fluctuate against the flow of selection.
To quantify just how unlikely this is, we remember that in the

rare cases where movement occurs against the flow, then the most
probable paths are close to a time t= jτj. Therefore, the proba-
bility of changing in frequency δp in the direction opposite of v (i.e.,
β negative) is obtained by substituting this time into Eq. S13, giving

Prðmoving  by  δp  against  vÞ≈ expð−2jβjÞ. [S14]

The above probability result assumed that S and D were
constant over a small interval δp. To calculate the probability of
fluctuating over the entire selective barrier SðpÞ to extinction,
one must therefore take the product of the probabilities of many
such jumps, each with its own βðpÞ. This product gives an integral
in the exponent

Pðpp → 0Þ≈ exp

"
2
Z0
p p

dp
SðpÞ
DðpÞ

#
. [S15]

In our specific case,

SðpÞ≈ sbp− sdp2 [S16]

DðpÞ≈ p=N [S17]

pp ≈ sb=sd. [S18]

The integral can be solved exactly giving

Pðpp → 0Þ≈ exp
�
−
Ns2b
sd

�
. [S19]

This result has the rather simple interpretation that what primar-
ily determines the probability is the barrier height. Evaluating the
strength of selection and noise at this highest point and multiply-
ing by the distance it has to move, pp, also gives exactly the above
result. The parameter

α≡Ns2b


sd [S20]

is therefore particularly important in the dynamics because it
alone determines the probability of fluctuating to extinction

Pðpp → 0Þ≈A exp½−Bα� [S21]

with A and B constants Oð1Þ.
At present, we have calculated the probability of fluctuating to

extinction. To translate this into an estimate for the rate of decay,
λ, we must remember that in deriving the above result for the
probability, we used the fact that each of the small jumps in
frequency δp that the BD haplotype takes to reach p= 0 lasts a
time τ= δp=S. We can therefore calculate how long it takes for
that probability to decay by adding up all of the τ on its journey
from p= pp to p= 0. However, our calculation must only include
the region where β> 1 (i.e., where selection dominates). There-
fore, the frequency limits in the integral are not p= pp and p= 0
but rather p= pp − 1=Nsb to p= 1=Nsb, because these define the
region of the barrier where β> 1 (see Fig. 2A). Therefore

time  to  extinction=
Z1=Nsb

p p−1=Nsb

dp
SðpÞ=

Z1=Nsb
p p−1=Nsb

dp
sbp− sdp2

[S22]

This integral will be dominated by where the flow of selection is
slowest, which is the start and the finish. Because of the symmetry
of the quadratic around the point p= pp=2, we can integrate from
1=Nsb to pp=2 and then double the result. We can also realize
that because p � 1 the quadratic term can be ignored, giving

time  to  extinction≈ 2
Zp p=2

1=Nsb

dp
sbp

=
2
sb
ln

 
Nsbp*

2

!
≈
2
sb
lnðαÞ. [S23]

This result again makes sense: This time is exactly the character-
istic time it would have taken the BD haplotype to rise from 1=Nsb
to pp, were it to have done so deterministically under the influ-
ence of selection alone. Approximating the rate is now straight-
forward: Given that an amount of probability expð−Ns2b=sdÞ is
lost in an amount of time ∼ 1=sb lnðαÞ, it means the rate of decay,
λ, must be approximately given by

λl ≈
e−α

ð1=sbÞlnðαÞ, [S24]

which is the result quoted Eq. 10 of the main text, such that
mean time to extinction τl ≈ 1=λl, and which agrees very well with
the simulations described in SI Text, section 4. We verify the
slightly counterintuitive dependence of λ on sb by performing
105 simulations at various sb but at fixed α in Fig. S3J, as well as
for various N, sb, and sd without fixing α (Fig. S3 A−I).

2.2. A Note on α for Arbitrary Dominance Coefficients. For the case
of arbitrary dominance coefficients (hb ≠ 1, hd ≠ 0), a relatively
straightforward extension can be made to our model by changing
α to reflect the fitness of heterozygotes (i.e., replace sb with
hbsb − hdsd). In this case, our approximations will hold as long
as there is still heterozygote advantage, or, in other words,
hbsb > hdsd and hbsb − hdsd < sd. Thus, α becomes

α≈N
ðhbsb − hdsdÞ2

sd
, [S25]

which will still predict the rate of loss. However, note that in the
rate of escape quoted in the main paper,
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λe ≈ rlNsb
sb
sd
≈ rlα, [S26]

the first sb value comes from the probability of establishment for
a new BO recombinant haplotype, and the second sb value comes
from the equilibrium frequency pp. Thus, for arbitrary domi-
nance, the probability of escape becomes

λe ≈ rlNsb
hbsb − hdsd

sd
. [S27]

2.3. Strong Drift, Weak Selection Regime (α< 1). When α< 1, there
is no region below pp in which selection dominates over drift.
However, there is a region above pp where selection will domi-
nate over drift. This will occur when the strength of selection
[SðpÞ= sbp− sdp2] approximately matches the strength of drift
(∼ ± 1=N). Because this occurs above pp, the dominant term in
SðpÞ is the quadratic term, so the balance between selection and
drift is a balance involving selection against the homozygotes,

−sdp2 ≈±1=N p≈
ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
. [S28]

This means that when the BD haplotype is below the frequency offfiffiffiffiffiffiffiffiffiffiffi
N=sd

p
, its dynamics are governed by drift, i.e., are largely neutral.

Under neutrality, the cumulative probability that a lineage which
started at one copy (no = 1) has gone extinct (n= 0) by time t is

Pr½n= 0jt�≈ e−no=t ≈ e−1=t ≈ 1− 1=t. [S29]

Thus, the probability that a neutral lineage goes extinct in an in-
terval dt near t is ∼ dt=t2, giving a distribution of extinction times
that are power law distributed as ∼ 1=t2.
The distribution of extinction times of the BD haplotype in the

α< 1 regime is expected to follow this neutral power-law distri-
bution, but with a cutoff at t≈

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
(due to the BD haplotype

being unable to drift to high frequencies where the recessive
deleterious mutation is exposed). The fact that the maximum
time a BD haplotype can remain in the population in this regime
is t≈

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
, which is the same as the maximum frequency it can

reach before selection against the homozygotes pushes it down in
frequency, is no accident. They are the same because, under
neutrality, the number of generations it takes to change by order
n is t≈ n. We verify this in the simulations section (section 4.3).
Recalling that the total probability of an escape event by time t is

probability  of   escape≈ rlsbN
Z t

0

p
	
t′
�
dt′ [S30]

(which is valid for a probability of escape � 1). Also recall that,
as we just showed and as quoted in Predictions for the Regime of
Weak Selection and Strong Drift (α � 1), in an interval dt, there
is a fraction ∼ dt=t2 of BD haplotypes that go extinct and a fraction
∼ rlsbt2 of BO haplotypes that escape via recombination, giving a
probability of escape ∼ rlsb   dt that is constant in time as long as
the BD haplotypes persist. Thus, the probability of fixation in
this α � 1 regime is

probability  of   fixation≈ rlsb

ZffiffiffiffiffiffiffiffiN=sd
p

0

dt′= rlsb
ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
[S31]

where the upper limit in the integral comes from the fact that it is
unlikely for the BD haplotype to drift for longer than ∼

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
generations.

3. Zones of Altered Adaptation
3.1. Strong Selection, Weak Drift (α> 1).
Zone of suppressed probability of fixation. In this regime, the proba-
bility that a BD haplotype fixes can be significantly reduced
relative to the equivalent beneficial mutation with no deleterious
hitchhiker, but only if it is likely to fluctuate to extinction before
escape can occur. This means that τl < τe. Using the expressions
for these times from Eqs. 10 and 11 in the main text, the condition
for the fixation probability to be significantly reduces becomes

ln½α�
sb

eα � 1=rlα. [S32]

Rearranging this equation defines a base pair distance, ll, around
a recessive deleterious mutation within which the probability of
fixation of beneficial mutations is reduced relative to the case of
no hitchhiker,

ll =
sb

rα ln½α� e
−α. [S33]

Zone of increased sweep time. Even if a beneficial mutation is not
driven to extinction, the duration of a beneficial mutation’s sweep
to fixation can be substantially extended if it’s genetically linked
to a recessive deleterious hitchhiker. To understand when this
occurs, consider that the total time of a successful sweep will be
prolonged by the time it takes for an escape event to occur,

average  sweep  time≈
ln½Nsb�

sb
+
�
1
τe
+
1
τl

�−1

. [S34]

The first term corresponds to the sweep time for a single adaptive
mutation with no hitchhiker, and the second term comes from condi-
tioning on fixation such that the extension in sweep time is determined
by the minimum of τe or τl. Typically, a sweep will be significantly
extended provided the additional time minðτe, τlÞ � ln½Nsb�=sb. Us-
ing the expressions for τe and τl from Eqs. 10 and 11 in the main text
and rearranging, we can again cast this in terms of a base pair distance,

le =
sb

rα  ln½Nsb�, [S35]

which is the distance to a recessive deleterious mutation within
which a new beneficial mutation must land to have its sweep time
significantly extended.

3.2. Strong Drift, Weak Selection (α< 1).
Zone of suppressed probability of fixation. The probability of fixation
in this regime, from Eq. 6 and Predictions for the Regime of Weak
Selection and Strong Drift (α � 1), is

PrðfixationÞ≈ rlsb

ZffiffiffiffiffiffiffiffiN=sd
p

0

dt= rlsb
ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
, [S36]

where the upper limit in the integral comes from the fact that it
is highly unlikely for a BD haplotype to drift for longer than
∼

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
generations. Compared with a beneficial mutation with

no hitchhikers (where probability of fixation is ∼ sb), a recessive
deleterious hitchhiker will significantly suppress the probability
of fixation whenever rl

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
< 1. This can be used to define a

base pair distance, ll, around any recessive deleterious mutation
within which a new beneficial mutation of effect size ∼ sb (or
smaller) has a reduced chance of fixation,

ll =
1
r

ffiffiffiffi
sd
N

r
. [S37]
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Zone of increased sweep time. In this regime, there can be no sig-
nificant increase in sweep time, because the loss time is always
small relative to the sweep time.

3.3. Quantifying Coding Gene Density for Drosophila melanogaster
and Humans. Given that deleterious regions are likely to occur
in functional regions, and that functional regions are likely to be
clustered in the genome (particularly for humans), we framed our
estimates of functional density in terms of the density of coding
genes around every coding gene. For this analysis in humans, we
downloaded the University of California, Santa Cruz (UCSC)
knownCanonical table of genes and their corresponding posi-
tions, where each gene is only represented by one isoform, and the
set of gene predictions are “based on data from RefSeq, Gen-
Bank, Rfam, and the tRNA Genes track. . .This is a moderately
conservative set of predictions” (UCSC website, genome.ucsc.
edu/cgi-bin/hgTables). We then excluded all genes that do not
appear in the knownGenePep list (i.e., excluded noncoding) and
excluded all genes that are not located on autosomes. Then,
using the annotated locations of all genes in this set, we quan-
tified the number of coding genes that fall within a window
centered around the midpoint of every coding gene, where the
window sizes were defined by our zone sizes. Note that this
means, for example, we had 19,353 data points for coding gene
densities because there are currently 19,353 coding genes an-
notated on the human autosomes. Results can be seen in Fig. S1
A and B.
We did a similar analysis forDrosophila, where we downloaded

from flybase.org the dmel-all-gene- list, excluded all genes that
do not appear on chromosomes 2 or 3, excluded all genes that do
not appear in the dmel-all-translation- list (i.e., excluded non-
coding), and only used the first isoform listed for every gene (i.e.,
if multiple isoforms were present, we used the -PA isoform).
Then, using the annotated locations of all genes in this set, we
quantified the number of coding genes that fall within a window
centered around the midpoint of every coding gene. In this case,
for Drosophila, there are currently 11,631 annotated coding genes
on chromosomes 2 and 3. Results can be seen in Fig. S1 C−F.

3.4. Estimates for Drosophila melanogaster and Humans for the
Proportion of the Genome in Which the Fixation Probability of
Beneficial Mutations Is Reduced. Table 1 gives predictions for the
proportion of coding genes in the Drosophila and human ge-
nomes that are subject to reduced fixation probabilities for new
beneficial mutations. These predictions are based on coding
gene densities (described in section 3.3) and the predicted zone
size around the deleterious mutations (described in sections 3.1
and 3.2). Because this zone is maximized in the α=Ns2b=sd ≤ 1
regime, we used a zone size of ll =

ffiffiffiffiffiffiffiffiffiffiffi
sd=N

p
=r. Note that this is

independent of the beneficial mutation effect size, and thus all
beneficial mutations that satisfy sb ≤

ffiffiffiffiffiffiffiffiffiffiffi
sd=N

p
behave similarly,

emphasizing that weakly adaptive mutations may be particularly
susceptible to the effects of hidden recessive deleterious varia-
tion in the genome. Details of how we constructed Table 1 are
found below. Method for Table 1:

Column 1= Organism and assumed population size

Column 2= Number of coding genes on autosomes, see sec-
tion 3.3

Column 3= Recessive deleterious effect size of interest

Column 4= ll   for  α< 1=
ffiffiffiffiffiffiffiffiffiffiffi
sd=N

p
=r

where brackets indicate number of genes which appear in this
zone, given by section 3.3

Column 5= the zone size is the same for all sb ≤
ffiffiffiffiffiffiffiffiffiffiffi
sd=N

p
Column 6= nd=gc   where

nd = number of recessive deleterious mutations in a haploid
set of autosomes (2−4)
gc = number of coding genes in reference genome

Column 7= column 4 brackets × column 6.

3.5. Estimates for Drosophila melanogaster and Humans for the
Proportion of the Genome in Which the Sweep Time of Beneficial
Mutations Is Extended. If we consider the beneficial mutations
that do reach fixation, we find that a substantial proportion of the
human and Drosophila genomes will cause there to be a stag-
gered phase during the beneficial mutation’s selective sweep,
particularly due to more mildly deleterious recessive mutations
(Table S1). Although the impact of recessive deleterious varia-
tion on the probability of fixation of beneficial mutations can be
simplified in terms of which mutations fall within the α=
Ns2b=sd < 1 regime, the potential for extended sweep times is not
as easily simplified. Extensions in sweep times do not occur in
the α< 1 regime; instead, genomes will be most affected by stag-
gered sweeps for intermediate values of α. In this regime, the
adaptive mutation can reach a stable equilibrium frequency (α≮1)
where it has a slow rate of loss (τl > ln½Nsb�=sb), but the rate of new
recombinants being generated in the population is not so large
that the staggered sweep is resolved quickly (τe > ln½Nsb�=sb). One
example where this regime likely applies is experimental evolu-
tions (in obligately sexual diploids, like fruit flies), where the
beneficial effect sizes may be strong but the population size is
small. For example, in a population of N = 1,000 flies, a beneficial
mutation with effect size sb = 1%will be subject to staggered sweep
phases within ∼65% of coding genes.
To give a better sense of the parameter range affected, see Fig. S1

G–I, where G and H are for more mildly deleterious mutations
(which can affect substantial portions of the genome), and I is for
recessive lethals (which do not have a substantial effect). Experi-
mental evolutions inDrosophila correspond to blue and purple lines
in Fig. S1 G−I. Details of how these plots were constructed can be
found below. Note that the plots are stepwise due to the mea-
surements of the clustering of genes (zone size is rounded to the
nearest order of magnitude and translated to the mean number of
genes within that distance; see section 3.3). Method for Table S1:

Column 1= Organism and assumed population size

Column 2= Number of coding genes on autosomes, see sec-
tion 3.3

Column 3= Recessive deleterious effect size of interest

Column 4=
sb

rα  ln½Nsb�
where brackets indicate number of genes which appear in this
zone, given by section 3.3

Column 5= Beneficial effect size of interest

Column 6= nd=gc   where

nd = number of recessive deleterious mutations in a haploid
set of autosomes (2−4)
gc = number of coding genes in reference genome

Column 7= column 4 brackets × column 6.

Our method for plots in Fig. S1 G–I was as follows: For Fig. S1
G−I, the y axis is count × density. Count denotes the number of
genes that appear in region le (see section 3.3); le = sb=rαln½Nsb�,
where r = 10−8 and α=Ns2b=sd. Density is 1/30 for sd = 0.01,
1/12,000 for dmel sd = 1, and 1/20,000 for human sd = 1. The x axis
is sb, where minimum sb is set by α=Ns2b=sd, due to moving into
the α< 1 regime where no substantial extension in sweep time
occurs, and maximum sb is set by sd, due to the beneficial mu-
tation being stronger than the deleterious mutation.
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4. Simulations
Two-locus Wright−Fisher forward simulations of an adaptive
mutation genetically linked to a recessive deleterious mutation
were performed to test our predictions. A wide range of param-
eters were varied, including selection coefficients (sb = 0.001− 0.1,
sd = 0.01− 1), recombination rates (c= rl= 10−8 − 10−1), and dip-
loid population sizes (N = 102 − 106), corresponding to ranges of
α=Ns2b=sd = 10−3 − 105. All simulations used sb ≤ sd and hetero-
zygous effects of hd = 0 and hb = 0.5 such that the equilibrium
frequency pp ≈ sb=2sd ≤ 1=2. We also included a one-locus control
beneficial mutation (with no hitchhiker) for comparison. Diploid
fitness was calculated as multiplicative across loci (as in Eqs.
S1−S3). Simulations tracked frequencies of haplotypes (i.e.,
BD, OO, BO, DO), where each generation consisted of re-
combination and selection in diploids, and then drift of haplo-
types (i.e., multinomial sampling). Simulations concluded when
the beneficial mutation approached fixation or extinction (i.e.,
p � 1− 1=2N or p � 1=2N).

4.1. Extinction Times in the α> 1 Regime. These simulations seeded
the BD haplotype at frequency pp and the OO haplotype at fre-
quency 1− pp, used zero recombination rate, and then recorded
the generation of extinction of the beneficial mutation (i.e., the
BD haplotype). A range of parameters were used, and each
parameter set was performed for 1,000 simulations. Parameters
were chosen such that α=Ns2b=sd > 1,  Nsd > 1 and mean time to
extinction τl = 1=λl � ln½Nsb�=sb (to ensure extinction times are
not confounded with the time it typically takes to traverse from
pp to 0).
The extinction times are predicted to be exponentially dis-

tributed with rate

λl ≈
e−α

ð1=sbÞlnðαÞ [S38]

called the “rate of loss,” where

α=Ns2b


sd. [S39]

Results of a few sample parameter sets can be seen in Fig. S2, in
which both histograms of extinction times (Fig. S2 A−C) and QQ
plots of exponential quantiles (Fig. S2 D−F) highlight that the
extinction times indeed look to be exponentially distributed (with
our predicted rate parameter indicated in red).
To test whether the rate of loss λl ≈ expð−αÞ * ðsb=lnðαÞÞ from

Eq. S24 accurately captures the correct scaling, or more specif-
ically is truly exponential in the parameter α=Ns2b=sd, we per-
formed a series of simulations in which a rate of loss was inferred
from the distribution of extinction times using the R function
fitdistr (from the downloadable R statistics package “MASS”). If
λl is indeed exponential in α, then we would expect that if we hold
all parameters constant except one (thus changing α via a single
parameter), this observed rate of loss would behave such that

rate= exp½−α� p ðsb=ln½α�Þ [S40]

rate p ðln½α�=sbÞ= exp½−α� [S41]

ln½rate p ðln½α�=sbÞ�=−α. [S42]

This is shown in Fig. S3, where changing a single variable (either
N, sb, or sd) affects the observed rate of loss only via the parameter
α, indicating that λl accurately captures the scaling in the exponent.
The term λl will predict the scaling for the rate of loss but not its
exact form, so for comparison with simulations, we fit constants to a
subset of simulations [finding λl = 0.1 expð−0.3αÞpðsb=lnðαÞÞ] and

used these coefficients throughout the rest of our predictions
for the rate of loss, the probability of fixation, and the sweep
time in simulations.

4.2. Escape Times in the α> 1 Regime. These simulations seeded the
BD haplotype at frequency p* and the OO haplotype at frequency
1− p*, used nonzero recombination rates, and then recorded the
generation of fixation or extinction of the beneficial mutation. A
range of parameters were used, and each parameter set was
performed for 1,000 simulations. We tried to choose parameters
that satisfied α=Ns2b=sd � 1 such that drift to extinction should
not confound measurements of escape time. Furthermore, we
chose parameters to satisfy Nsd > 1 (such that BD does not drift
to fixation) and to satisfy τe = 1=λe � ln½Nsb�=sb (such that es-
cape times are not confounded with the time it typically takes to
traverse from p* to 1).
The escape times are predicted to be exponentially distributed

with rate

λe ≈ cα [S43]

called the “rate of escape,” where

α=Ns2b


sd. [S44]

Results of a few sample parameter sets can be seen in Fig. S4, in
which both histograms of escape times (Fig. S4 A−C) and QQ
plots of exponential quantiles (Fig. S4 D−F) highlight that the
escape times indeed look to be exponentially distributed (with
our predicted rate parameter indicated in red).
To test whether cα= cNs2b=sd captures the correct scaling for

the rate of escape, we performed a series of simulations in which
a rate of escape was inferred from the distribution of fixation
times using the R function fitdistr (from the library MASS). This
observed rate is expected to scale linearly in response to c,N, s2b
and 1=sd. This is shown in Fig. S5, where each plot has the results
from a series of simulations in which three parameters have fixed
values and one parameter varies (either N, sb, sd, or c). The term
λe will predict the scaling for the rate of escape but not its exact
form, so, for comparison with simulations, we fit a constant using a
subset of simulations (finding λe = 0.8cα), and used this coefficient
throughout the rest of our predictions for the rate of escape, the
probability of fixation, and the sweep time in simulations.

4.3. Extinction Times in the α< 1 Regime. To observe the extinction
times in the α< 1 regime, we performed 100,000 simulations
in the α< 1 regime (also requiring Nsd > 1 so there is selection
against the recessive deleterious mutation), seeding the BD
haplotype at frequency 1=2N and the OO haplotype at frequency
1− 1=2N, and then recording the generation of extinction. Re-
sults are shown in Fig. S6. One way to view a power law is to
plot the complementary cumulative distribution on a log−log
plot, such that lnðPr½T > t�Þ= lnðtÞ. The neutral expectation is
indicated by the black line, and the distribution of extinction
times for neutral simulations are shown in the light blue histo-
gram (note that it follows the neutral expectation, although finite
sampling leads to poorer resolution at the tip of the tail). The
distribution of extinction times from simulations in the α< 1
regime are shown in the dark blue, pink, and yellow histo-
grams, where they follow the neutral expectation up until a
cutoff time that scales with ∼

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
. The term

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
will

predict the scaling for the extinction time but not its exact
form, so, for comparison with simulations, we fit a constant to
a subset of simulations (finding 4

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
) and used this co-

efficient throughout the rest of our predictions for the loss
time when α< 1, the probability of fixation, and the sweep
time in simulations.
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4.4. Probability of Fixation of the Beneficial Mutation (Both α Regimes).
These simulations seeded the haplotype at frequency p= 1=2N
and the OO haplotype at frequency 1− 1=2N, used nonzero re-
combination rates, and then recorded the generation of fixation or
extinction of the beneficial mutation. A range of parameters were
used, and each parameter set was performed for 1,000/sb simula-
tions such that a one-locus control beneficial mutation (with no
deleterious hitchhiker) is expected to fix in ∼1,000 simulations.
For comparison with simulation results, we used the following

analytic predictions for the probability of fixation of a beneficial
mutation that enters a population on a BD haplotype:

PrðfixationÞ≈

8>>><
>>>:

�
1− e−sb

1− e−2Nsb

��
λe

λe + λl

��
1− e−ðλe+λlÞtmax

�
ðfor  α> 1Þ

�
1− e−sb

1− e−2Nsb

��
1− e−c4

ffiffiffiffiffiffiffiffi
N=sd

p �
ðfor  α< 1Þ

[S45]

where

λl ≈
sb

ln½α� e
−α ðfor  α> 1Þ [S46]

λe ≈ cα ðfor  α> 1Þ [S47]

α=
Ns2b
sd

  and  c= rl. [S48]

A full panel of simulation results with analytic predictions for the
probability of fixation can be seen in Fig. S7.
The first term in the probability of fixation in both regimes is

the probability of establishment, where we have replaced the
approximation sb with the more exact form 1− e−sb=1− e−2Nsb for
the sake of comparison with simulations (particularly important
for small population sizes). Note that in the α> 1 regime, the
third term is the probability that escape occurs before the
simulations end at time tmax (due to not being able to run
simulations for infinite generations). Simulations ran for, at
most, tmax = 109 generations.
A beneficial mutation of effect sb will have a decreased pro-

bability of fixation if it falls within a recombination distance cl of
the recessive deleterious mutation with effect sd in a population
of N. In the α> 1 regime, this is found by setting λl = λe, and
in the α< 1 regime, this is found by setting c= 1=

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
. For

comparison with simulations, we thus use the following analytic
predictions:

cl ≈

8><
>:

max
�

sb
rα ln½α�eα,  

1
α  tmax

�
ðfor  α> 1Þ

ffiffiffiffiffiffiffiffiffiffiffi
sd=N

p ðfor  α< 1Þ
. [S49]

These predictions for cl can be seen as the vertical dashed gray
lines in Fig. S7.

4.5. Sweep Time of the Beneficial Mutation (Both α Regimes). These
simulations seeded the BD haplotype at frequency p= 1=2N and
the OO haplotype at frequency 1− 1=2N, used nonzero recom-
bination rates, and then recorded the generation of fixation or
extinction of the beneficial mutation. A range of parameters
were used, and each parameter set was performed until 500 fixation
events occurred.
For comparison with simulation results, we used the following

analytic predictions for the sweep time of a beneficial mutation
that enters a population on a BD haplotype:

total  sweep  time≈

8>>>>><
>>>>>:

4 ln½2Nsb�
sb

+
�
1
τe
+
1
τl

�−1

ðfor  α> 1Þ

4 ln½2Nsb�
sb

+

 
1
τe
+

1

4
ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
!−1

ðfor  α< 1Þ
.

[S50]

A full panel of simulation results can be seen in Fig. S8. Note that the
first term (in both regimes) has added factors of 2 that come from the
sweep time predictions for diploids. The second term (in both re-
gimes) is derived from the faster of two processes—either the es-
cape time (τe) or the loss time (τl for α> 1 and

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
for α< 1).

The sweep time will not be changed if ln½Nsb�=sb is larger than τe,
τl, or

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
. If ln½Nsb�=sb < τe < ðτl   k

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p Þ, then escape will
generally occur before extinction of the BD haplotype, and the
sweep will be extended by τe. If ln½Nsb�=sb < ðτl k

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p Þ< τe, then
loss occurs before escape; however, we are conditioning on fixation,
and thus, in the rare instances where the beneficial mutation does
reach fixation, it must do so in a time τl or

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
(depending on

the regime). For example, in Fig. 4 C and D, we have a case of
ln½Nsb�=sb < τl, and thus there is still an extension in the sweep time
(seen as the leveling off of sweep times at low recombination rates).
A beneficial mutation of effect sb will have an increased sweep

time if it falls within a recombination distance ce of the recessive
deleterious mutation with effect sd in a population of N. This can
be found by setting 1=λe = ln½Nsb�=sb; thus, for comparison with
simulations, we use the following analytic predictions:

ce =
sb

α ln½Nsb� ðfor  α> 1  and  α< 1Þ . [S51]

These predictions for ce can be seen as the vertical dashed red
lines in Fig. S8. Note that in the α< 1 regime, the sweep time is
not expected to be substantially altered, because, in this regime,
where α=Ns2b=sd < 1, the beneficial mutation must escape in a
time

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
, which is generally less than ln½Nsb�=sb.

4.6. Testing Robustness of Model if Deleterious Allele Segregating at
High Frequency. Our model predictions should be robust to cases
where the recessive deleterious allele is segregating on an OD
haplotype in many individuals in the population, because, in our
case of Nμd < 1, the deleterious mutation will typically reach, at
most,

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
copies, or a frequency of 1=

ffiffiffiffiffiffiffiffi
Nsd

p
. To understand

this, consider that the deleterious variation will reduce the mean
(log) fitness advantage of a new BD haplotype, due to causing
the BD haplotype to now appear in BD=OD diploids in addition
to appearing in BD=OO diploids,

wBD ≈ sb × ðfrequency  of  OOÞ+ ðsb − sdÞ× ðfrequency  of  ODÞ
[S52]

wBD ≈ sb

�
1−

1ffiffiffiffiffiffiffiffi
Nsd

p
�
+ ðsb − sdÞ

�
1ffiffiffiffiffiffiffiffi
Nsd

p
�

wBD ≈ sb −
sbffiffiffiffiffiffiffiffi
Nsd

p +
sbffiffiffiffiffiffiffiffi
Nsd

p − sd
1ffiffiffiffiffiffiffiffi
Nsd

p [S53]

wBD ≈ sb −
ffiffiffiffi
sd
N

r
. [S54]

Thus, the mean selective advantage of the BD haplotype can be
substantially reduced by segregating deleterious variation when
sb K

ffiffiffiffiffiffiffiffiffiffiffi
sd=N

p
, which, interestingly, is when α=Ns2b=sd K 1. How-

ever, as we have shown, whenever α< 1, the selective advantage
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of the BD is irrelevant because the dynamics are determined by
drift and selection against the recessive deleterious allele. There-
fore, having multiple copies of an OD haplotype will not change
our results. We confirmed that our analytics still hold in such a
case, using simulations that seeded an OD haplotype at

ffiffiffiffiffiffiffiffiffiffiffi
N=sd

p
copies when the BD haplotype appears.

5. Additional Signatures of Staggered Sweeps
Some additional statistics were calculated for the diversity around
a beneficial mutation that had a recessive deleterious hitchhiker

during its sweep to fixation (Fig. S9). Hard sweeps were simulated
by seeding a beneficial mutation with effect sb on a single hap-
lotype at establishment frequency, staggered sweeps by doing the
same but where the single haplotype also contained a recessive
deleterious mutation with effect sd a distance l away, and soft
sweeps by seeding the beneficial mutation on a new haplotype at
establishment frequency every t generations, where t was drawn
from an exponential distribution with rate sb (thus θ≈NUb = 1
beneficial mutation entering the population every generation
with an establishment probability of ∼ sb).

1. Maruyama T (1974) The age of an allele in finite population. Gen Res 23(2):137–143.
2. Kusakabe S, Yamaguchi Y, Baba H, Mukai T (2000) The genetic structure of the

Raleigh natural population of Drosophila melanogaster revisited. Genetics 154(2):
679–685.

3. Gao Z, Waggoner D, Stephens M, Ober C, Przeworski M (2015) An estimate of the average
number of recessive lethal mutations carried by humans. Genetics 199(4):1243–1254.

4. Latter BD (1998) Mutant alleles of small effect are primarily responsible for the loss of
fitness with slow inbreeding in Drosophila melanogaster. Genetics 148(3):1143–1158.
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Fig. S1. Histograms of the density of coding genes around every coding gene in the reference genomes of human and Drosophila (A−F) and predictions for
the proportion of coding genes affected in the Drosophila genome by staggered phases as a function of sb (G−I). (A and B) For humans, the number of coding
genes which appear in a (A) 100-kb and (B) 1-Mb window (respectively), where 19,353 windows, each centered on the midpoint of a coding gene, were used
(per window size). (C−F) For Drosophila, the number of coding genes that appear in a (C) 10-kb, (D) 100-kb, (E) 300-kb, and (F) 1-Mb window (respectively),
where 11,631 windows, each centered on the midpoint of a coding gene, were used (per window size). (G−I) Proportion of coding genes in the Drosophila
genome impacted by extended staggered phases due to deleterious mutations with effect sizes (G) 1%, (H) 5%, and (I) 100%, as a function of sb where the
minimum is set by when α= 1 and the maximum is set by sb = sd, and where each line indicates calculations for a different population size.
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Fig. S2. Histograms and QQ plots demonstrating that the extinction times in the α> 1 regime are exponentially distributed (a fuller set of simulation results
across parameter regimes can be seen in Fig. S3). A−C consist of histograms of extinction times from 1,000 simulations (the parameter set used is indicated in
the histogram title), such that the x axis is the extinction time t and the y axis is the frequency of events on a log scale. Note that if extinction times are indeed
exponentially distributed with rate λl, then we expect these histograms to be described by the line logðyÞ≈−λlx, which is indeed the case and can be seen by
the red line, which is an exponential density curve with the analytically predicted rate parameter λl. Note that short extinction times (1=λl = τl � ln½Nsb�=sb)
will not be exponentially distributed, sometimes causing an uptick in the distribution for extinction times near zero. D−F consist of the corresponding QQ plot
for each histogram above it, where the x axis is the theoretical quantiles for an exponential distribution with rate λl and the y axis is the sample quantiles
of extinction times obtained from simulations. The fact that the points lie along the straight line indicate that the extinction times are likely expo-
nentially distributed.
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Fig. S3. Testing whether the rate of loss is indeed exponential in the parameter α=Ns2b=sd, as described by Eq. S43. Each subplot contains results from a set of
simulations in which two parameters were held constant and one parameter varied; however, the observed rate of loss will be predicted through the pa-
rameter α (see Eq. S43). The rate of loss was inferred from 1,000 simulations, where an exponential distribution was fit to the extinction times using the R
function fitdistr from the package MASS. Parameter values used (for N, sb, sd, and always c= 0) are indicated in the heading of each subplot (with blank values
for the parameter varied, details for which are found in the gray text). For example, in A, each black data point indicates the results from 1,000 simulations in
which sb = 0.01 and sd = 0.05 and N is varied, such that the value of N used is indicated by the gray text with the corresponding α (written “a”) next to it. A−C

Legend continued on following page
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use fixed values of sb and sd (values indicated in headings) and varies N (values indicated in gray text), D−F use fixed N and sd and varied sb, and G−I use fixed N
and sb and varied sd. J verifies the sb dependence of λ by plotting the rate of decay λ at fixed α over a range of sb. These plots show that the rate of loss observed
in simulations is indeed exponential in α.

Fig. S4. Histograms and QQ plots demonstrating that the escape times in the α> 1 regime are exponentially distributed (a fuller set of simulation results across
parameter regimes can be seen in Fig. S5). A–C consist of histograms of escape times from 1,000 simulations, such that the x axis is the escape time t and the y
axis is the frequency of events on a log scale, and where the parameter set used is indicated in the histogram title such that A uses N = 25,000, sb = 0.01, sd =
0.05; B uses N = 200,000, sb = 0.005, sd = 0.01; and C uses N = 50,000, sb = 0.003, sd = 0.01. Note that if escape times are indeed exponentially distributed with
rate λe, then we expect these histograms to be described by the line logðyÞ≈−λex, which is indeed the case and can be seen by the red line, which is an
exponential density curve with the analytically predicted rate parameter λe. Note that short escape times (1=λe = τe � ln½Nsb�=sb) will not be exponentially
distributed, sometimes causing an uptick in the distribution for escape times near zero. D–F consist of the corresponding QQ plot for each histogram above it
(such that D uses the same variables as A, etc.), where the x axis is the theoretical quantiles for an exponential distribution with rate λe and the y axis is the
sample quantiles of escape times obtained from simulations. The fact that the points lie along the straight line indicate that the escape times are likely ex-
ponentially distributed.
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Fig. S5. Testing whether the rate of escape indeed scales with cα=Ns2b=sd. Each subplot contains results from a set of simulations in which three parameters
were held constant and one parameter varied, such that the observed rate of escape should scale with the varied parameter (as written on the x axis). Each
data point indicates the results from 1,000 simulations, where an exponential distribution was fit to the escape times using the R function fitdistr from
the package MASS and this inferred rate of escape recorded (y axis). Parameter values used (for N, sb, sd,c= 0) are indicated in the heading of each subplot
(with blank values for the parameter varied, details for which are found in the gray text). For example, in A, each black data point indicates the results from
1,000 simulations in which sb = 0.001, sd =0.01, c= 10−7, and N is varied across data points where the value of N used is indicated by the gray text with the

Legend continued on following page
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corresponding α (written “a”) next to it. A−D use fixed values of sb, sd, and c (values indicated in headings) and varied N (values indicated in gray text), D−F use
fixed values of N, sd, and c and varied sb, G−I use fixed values of N, sb, and sd and varied c, and J−L use fixed values of N, sb, and c and varied sd. These plots show
that the rate of escape scales with cα.
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Fig. S6. Histogram of extinction times in the α<1 regime, where each color indicates the results from 100,000 simulations using the parameter set indicated at
the top of the plot in the corresponding color. The light blue histogram indicates the results from a neutral simulation, where the black y = 1=t line is the
corresponding expectation for the distribution under neutrality. The dark blue, pink, and yellow histograms show that under the α< 1 regime, the distribution
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Fig. S7. Probability of fixation (y axis) vs. the recombination rate c (x axis). These plots show the comparison of simulations to analytics, where each data point
is the result from 1,000/sb simulations, and the horizontal dashed line is the expectation for a single beneficial mutation with no deleterious hitchhiker. Note
that the population size N is indicated at the top of each column in a font color that corresponds to the color of the data points, the recessive deleterious effect
is sd = 0.1, and the beneficial mutation effect sb is indicated at the left side of each row in a font color that corresponds to the color of the plot axes. Gray
vertical dashed lines indicate the predicted crossover point cl, such that recombination distances below this have a substantially decreased probability of
fixation compared with a one-locus control beneficial mutation with no hitchhiker.
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Fig. S8. Sweep time (y axis) vs. the recombination rate c (x axis). These plots show the comparison of simulations to analytics, where each data point is the
result from 500 simulations in which fixation occurred, and the horizontal dashed line is the expectation for the sweep time of a single beneficial mutation
with no deleterious hitchhiker. Note that the population size N is indicated at the top of each column in a font color that corresponds to the color of the data
points, the recessive deleterious effect is sd = 0.1, and the beneficial mutation effect sb is indicated at the left side of each row in a font color that corresponds
to the color of the plot axes. Red vertical dashed lines indicate the predicted crossover point ce, such that recombination distances below this have an increased
sweep time compared with a one-locus control beneficial mutation with no hitchhiker.
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Fig. S9. Additional sweep signatures, averaged across 100 simulations using a diploid population size of N = 1,000 and a beneficial mutation effect size
sb = 0.05, where black lines indicate a hard sweep, blue lines indicate a soft sweep (Nμb = 1), red lines indicate a staggered sweep where sd = sb = 0.05, and
orange lines indicate a staggered sweep where sd = 0.5 such that sb � sd. For calculating statistics a window size of 30,000 base pairs with step size of 10,000
base pairs was used. Pink bars are SEMs. (A) The homozygosity of the most common haplotype (H1=p2

1), (B) the number of haplotypes in the population (“K”),
(C) the ratio of the most common to the second-most common haplotype, and (D) θs diversity.

Assaf et al. www.pnas.org/cgi/content/short/1424949112 15 of 16

www.pnas.org/cgi/content/short/1424949112


Table S1. Estimates for Drosophila melanogaster and humans for the proportion of the genome in which the sweep time of the
beneficial mutation is extended

Organism and
population size

Number of
coding genes

Recessive
deleterious
effect (sd), %

Zone of extended
sweep time

[genes in zone]

Beneficial
effect (sb)

impacted, %

Density of
recessive

deleterious

Proportion of
adaptive mutations

impacted, %

Drosophila ∼12,000
N = 106 100 100 b [0.01 gene] ∼5 1/(genome) ∼0

5 10 b [0.001 gene] ∼5 1/(30 genes) ∼0.003
1 10 b [0.001 gene] ∼1 1/(30 genes) ∼0.003

N = 103 100 1 Mb [130 genes] ∼5 1/(genome) ∼1
5 10 kb [3 genes] ∼5 1/(30 genes) ∼10
1 100 kb [20 genes] ∼1 1/(30 genes) ∼65

N = 102 100 — ∼5 1/(genome) —

5 1 Mb [130 genes] ∼5 1/(30 genes) ∼100
1 10 Mb [103 genes] ∼1 1/(30 genes) ∼100

Human (n = 104) ∼20,000 100 100 kb [3 genes] ∼1 1/(genome) ∼0.01
1 100 kb [3 genes] ∼0.10 1/(100 genes) ∼3

1/(30 genes) ∼10
1/(10 genes) ∼30

Dashes indicate no effect on sweep time due to α≤ 1, in which case the beneficial mutation effect size of interest is unlikely to sweep due to the recessive
deleterious variation in the genome.
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