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SI: Individual-Based Model
We test the predictive power of the derived key parameters using
individual-based simulations. Individuals are distributed among
demes that form a 1D habitat, with the phenotypic optimum
varying along the habitat, and experience a life cycle consisting of
selection, mutation, recombination, and then dispersal. Distance
is measured in demes, and time in generations. Every generation,
each individual mates with a partner drawn from the same deme,
with probability proportional to its fitness, to produce a number of
offspring drawn from a Poisson distribution with mean of Exp½r�,
where r is the individual’s Malthusian fitness in continuous time.
Generations are nonoverlapping. Individual fitness declines due to
deviation of the phenotypic trait (z) from the optimum and due to
crowding (fitness is density dependent). The trait is determined by
a number of additive diallelic loci, which permits genetic variation
to evolve. All parameters are described in Table 1. The model is
derived as a limit to continuous time and so applies to a wide
range of models that reduce to this limit. In this limit, the rate of
spatial dispersal depends only on the variance of distance moved,
and the effective population density (for both allele frequency and
demographic fluctuations) depends only on the variance of off-
spring number.

Life Cycle. Discrete-time individual-based simulations are set to
correspond to the model with continuous time and space. The life
cycle is selection → mutation → recombination → migration.

Dispersal. The habitat is formed by a 1D array of demes. With
deme spacing δx= 1, the population size per deme corresponds
to the population density. We assume diffusive migration with a
Gaussian dispersal kernel. The tails of the dispersal kernel need
to be truncated: we choose truncation at 2 SDs of the dispersal
kernel throughout, and adjust the dispersal probabilities fol-
lowing ref. 1 (p. 1,209) so that the discretized dispersal kernel
sums to 1, and the variance of dispersal is adjusted correctly. For
dispersal per generation at σ =

ffiffiffiffiffiffiffiffi
1=2

p
, dispersal reduces to a

nearest-neighbor migration with a probability of migration left
and right of m= 1=4.

Selection. Every generation, each individual produces a Poisson
number of offspring with mean of the individual’s fitness Exp½ðrÞ�;
where r= rmð1−N=KÞ− ðz− θÞ2=ð2VsÞ, as defined earlier.

Mutation.Mutation rate is set to be small so that its contribution to
genetic variance is negligible, but large enough to in principle
enable expansion of a species’ range over the total time of 5,000
generations. Specifically, it is set to one substitution per the
whole population and generation. Genetic variance maintained
in a population due to dispersal across environments can
be substantially larger than genetic variance maintained by
mutation–selection balance in uniform environments. In uniform
environments, mutational variance Vm =

Pnl
i μ  α

2
i (where αi are

the allelic effects, and nl is the number of loci) is robustly esti-
mated to be between about 5 · 10−5VE and 5 · 10−3VE (2). Taking
a heritability h2 ≡VG=ðVG +VEÞ= 1=3, we get Vm between 10−4VG
and 10−2VG. In our model, genetic variance is inflated due to dis-
persal across environments, and so Vm=VG must be yet smaller.
Taking the higher limit of Vm = 10−2VG, it follows that μ should be
smaller than about 4 · 10−3. It turns out that, in general, the increase
of genetic variance due to mutation cannot be fully included in
the predictions, as the contribution of mutation–selection balance
cannot be robustly separated from the clinal variation (Fig. S10). A

considerably higher genetic variance than VG,mut = 2μ  nl   Vs (up to
the limit of 1=4α2nl) can arise due inflation of the variance by
mutation along existing clines. Therefore, we concentrate on a
parameter range where the contribution of mutation to genetic
variance is low, which is a biologically plausible range. In our
model, genetic variance is maintained by gene flow across the
environment.

Reproduction, Recombination. The mating partner is drawn from
the same deme, with the probability proportional to its fitness.
Selfing is allowed at no cost. The genome is haploid with unlinked
loci (the probability of recombination between any two loci is 1=2);
the allelic effects αi of the loci combine in an additive fashion.

Simulation Runs.Evolution starts with a well-adapted population at
the center of the habitat. The habitat is about 10 cline widths wide;
the number of genes is chosen so that, with all genes adapted, the
population spans the whole habitat, and that there are enough
genes to maintain the “optimal” variance VG = bσ

ffiffiffiffiffiffi
VS

p
at the

central part of the habitat. At the start of the simulation, one-
half of the genes are adapted: their clines take the form and
spacing as assumed for the deterministic model under linkage
equilibrium.
The population evolves for 5,000 generations; in total, we

recorded over a thousand runs where without genetic drift the
local population density would be greater than 4 assuming uni-
form adaptation (such that trait mean matches the optimum). We
a priori eliminated very small local population sizes (N < 4) so
that the population size within a generational dispersal is not
excessively small. The parameters were first varied one at a time,
and then we tested the threshold drawing the parameters from
distributions consistent with our knowledge of the range ex-
pected in nature (ref. 3, discussion). The latter will be referred to
as the “random” set, with 1,000 runs. The Mathematica code for
the simulations, including the distributions used to draw the
unscaled parameters for the “random” set, is provided in Dataset
S1. Fig. S1 shows the realized distributions for both the unscaled
parameters and compound parameters.

SI: Linkage Equilibrium
Stabilizing selection on a quantitative trait generates negative
linkage disequilibrium, whereas dispersal generates positive linkage
disequilibrium. Felsenstein’s (4) analysis of variance components
showed that, at equilibrium, the linkage disequilibrium generated
by dispersal cancels out with the negative linkage disequilibrium
generated by stabilizing selection.
The argument extends to a quantitative trait determined by

many diallelic loci, here demonstrated for a haploid genome. The
genetic variance is VG =

P
α2i piðxÞqiðxÞ+ 2

P
i≠jαiαjDij. The in-

crease of linkage disequilibrium at quasi-linkage equilibrium (5)
between dispersal with variance σ2 and recombination rij is given
by Dijjdisp = ðσ2=rijÞðdpi=dxÞðdpj=dxÞ (6). With allele frequencies
at equilibrium, the linkage disequilibrium generated by stabilizing

selection alone is Dijjsel =
�
−r+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ij + 4ð1− rijÞαiαj=Vs   piqipjqj

q �.

2ð1− rijÞ∼−αiαj=ðrijVsÞ  piqipjqj for Dij small.
In this first-order approximation, the terms cancel for each pair

of loci when the cline shape is the same as that under linkage
equilibrium (ref. 7, two-allele model)—independently of the
cline spacing across space: Dij ≡Dijjdisp +Dijjsel = 0. This is because
dpi=dx= piqi   4=wi, and the cline width at linkage equilibrium is
wi = 4σαi=

ffiffiffiffiffi
Vs

p
.
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It may be that the cline width wi or the linkage disequilibrium is
distorted by additional forces, and/or by strong selection—then the
linkage disequilibrium components due to dispersal and selection may
not cancel. However, unless selection is strong, the first-order ap-

proximation gives a simple prediction for the pairwise disequilibrium:
Dij =Dijjdisp +Dijjsel = σ2

rij
piqipjqj16=ðwiwjÞ− αiαj=ðrijVsÞ  piqipjqj. For

example, we can expect that positive linkage disequilibrium Dij,
generated by long-range dispersal, would drive steeper clines.

1. Polechová J, Barton NH (2005) Speciation through competition: A critical review.
Evolution 59(6):1194–1210.

2. Houle D, Morikawa B, Lynch M (1996) Comparing mutational variabilities. Genetics
143(3):1467–1483.

3. Polechová J, Barton N (2011) Genetic drift widens the expected cline but narrows the
expected cline width. Genetics 189(1):227–235.

4. Felsenstein J (1977) Multivariate normal genetic models with a finite number of loci.
Proceedings of the International Conference on Quantitative Genetics, eds Pollak E,
Kempthorne O, Bailey Jr T (Iowa State Univy Press, Ames, IA), pp 227–245.

5. Barton NH, Turelli M (1991) Natural and sexual selection on many loci. Genetics 127(1):
229–255.

6. Barton NH (1986) The maintenance of polygenic variation through a balance between
mutation and stabilizing selection. Genet Res 47(3):209–216.

7. Barton N (2001) Adaptation at the edge of a species’ range. Integrating Ecology and
Evolution in a Spatial Context, eds Silvertown J, Antonovics J (Blackwell, London), pp
365–392.

Fig. S1. Distribution of parameters used in the “random set,” as described in Table 1. Gray: all unscaled parameters. Light blue: composite parameters. Dark green:
scale-free parameters [both s=r* and 1=ðN̂σ

ffiffiffiffiffiffi
r*

p
Þ are given for a reference, although one of them is always redundant; Materials and Methods, Rescaling].
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Fig. S2. Cline width decreases as genetic drift gets stronger relative to selection. (A) Cline width, defined as a measure of total heterozygosity across space
(w ≡ 4

R
p  q), is approximated by w =wsð1− 0.392=ðNσ ffiffi

s
p ÞÞ (thick dotted line; method from ref. 1, supplementary text). Dots give the median cline width across

loci with their positive and negative SDs. The dashed horizontal line gives the deterministic cline width, ws = 4σ=
ffiffiffiffiffi
2s

p
(2, 3). As the genetic drift gets very strong

relative to selection, the predictions diverges (Bottom Right): for very weak selection, the neutral limit hw0i→ 4σ2N is approached (solid diagonal line; from ref.
4). Note that genetic variance decreases with the same factor as cline width. (B) The decrease in cline width can be understood from the rise in fluctuations of
each cline—as fluctuations increase, allele frequencies fix locally and the cline steepens. Fluctuations in clines hFi rise approximately with hFi= 0.392=ðNσ ffiffi

s
p Þ,

shown by a dashed line. hFi is the variance in allele frequencies scaled by the expected allele frequency, averaged across space, therefore ranging between
0 and 1: hFi≡ R∞

−∞ varðpðx, tÞÞdx=R∞
−∞hpðx, tÞihqðx, tÞidx (ref. 1, p. 228). Note that these formulae apply only to 1D habitats: as the width of the second (selectively

neutral) spatial dimension of the habitat increases, the predictions will start to differ because the effect of genetic drift on a cline depends only weakly on
selection in 2D habitats (5). Parameters: b= 0.1, σ2 = 1=2, Vs =2, rm = 1.025, α= 1=

ffiffiffiffiffiffi
20

p
, μ= 10−4, carrying capacity K increases from 4 to 260.
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Fig. S3. Species range can fragment when B> 0.15Nσ
ffiffi
s

p
(Fig. 2), and additionally, B>

ffiffiffiffiffiffiffi
2A

p
(Fig. 4). Exact conditions that always lead to range fragmentation

were not determined. Fragmented populations are shown in open circles in Figs. 2 and 4. (A) Typically, the gradient in trait mean is zero within each fragment.
(B) Populations are disjunct, and across the habitat, the population size is considerably smaller than predicted for “perfect” adaptation. (C) Typically, there is no
clinal variation, although transiently, a few clines are maintained. (D) Correspondingly, local genetic variance is mostly near zero. Parameters are as follows:
b≐1.18; σ2≐1, Vs≐0.44, rm = 1.97, K = 29.2, μ= 6 ·10−8, α= 0.0093, time = 5,000 generations (shown at generation 4,800). Note that this fragmentation is not
driven by edge effects that arise when population at the carrying capacity reaches the edge of the available habitat, where there is less maladaptive gene flow,
which leads to local increase of density, followed by suppression of nearby populations toward the center—and the effect propagates (1). This effect is ex-
plained in ref. 2. Here, the simulations are set up such that the population never reaches the margins of the available habitat.

1. Doebeli M, Dieckmann U (2003) Speciation along environmental gradients. Nature 421(6920):259–264.
2. Polechová J, Barton NH (2005) Speciation through competition: A critical review. Evolution 59(6):1194–1210.

Fig. S4. Nonuniform carrying capacity generates a stable range margin. (A) The optimum changes across the environment with a constant gradient b= 0.3—
the population starts well adapted at the more central part of the habitat (lighter blue). (B) The population density declines away from the center—red dots
give the predicted failure of the adaptation, based on B* = 0.15 Nσ

ffiffi
s

p
. (C) Three representative clines are shown in black, and other clines form the gray

background (every 10th cline displayed). (D) Genetic variance is substantially lower than the deterministic prediction (black dashed line). The dashed green line
gives the predicted V*

LE including the effect of genetic drift: V*
LE =VLEð1− 0.392=ðN̂σ ffiffi

s
p ÞÞ (Fig. S2). Parameters are as follows: b= 0.3, σ2 =1=2, Vs = 1, rm = 1.1,

μ= 10−7. Population is shown after a stable range margin is reached at time = 100,000 generations (with the exception of the initial distribution of trait values,
shown in light blue).
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Fig. S5. Species’ range is more robust within the already-occupied habitat. A drop in the density to or below the predicted threshold B* = 0.15 Nσ
ffiffi
s

p
(dashed

red line in B) prevents range expansion. However, a considerably larger drop in the density is necessary before the range fragments within the occupied habitat
(A and C). In this example, species’ range contracted from a local drop in the density right in the middle of the range (arrow in B), where locally, genetic drift
depleted genetic variance to zero. Predicted segregating genetic variance V*

LE =VLEð1− 0.392=ðN̂σ ffiffi
s

p ÞÞ is given by green dashed line in D. Note that segregating
genetic variance VLE =

P
iα

2
i piqi (connected black dots, D) changes over scales of σ=

ffiffi
s

p
, whereas population size (B) changes over much smaller scales σ. Species’

range is more robust to fluctuations within the already-occupied habitat because migration from the neighboring populations stabilizes the species’ range; the
threshold (dashed red line) predicts when on a linear gradient, species’ range would collapse from the margins. Subplot descriptions and deterministic pre-
dictions (black dashed lines) are the same as in Fig. 1. Parameters are as follows: b= 0.3, σ2 = 1=2, Vs = 1, α=

ffiffiffiffiffiffiffiffiffiffiffi
1=50

p
, rm = 1.1, μ= 3 ·10−7, time = 40,000 gen-

erations. At the start of the simulation, population is adapted to the central half of the available habitat. Carrying capacity is generated from a Gaussian
distribution centered around the threshold (N*, dashed red line) with a SD of N*=3; the width of the patches is uniformly distributed between 1 and 30 demes.

Fig. S6. Sharp margin to a species’ range forms even when allelic effects αi are nonuniform. With exponentially distributed allelic effects αi, the expansion
slows down after 40,000 generations (Fig. S7A), at the threshold predicted by mean selection per locus B* = 0.15Nσ

ffiffi
s

p
= 0.34 (red dots in A and B). As in this

example the allelic effects are not bounded, over very long times, as rare alleles with large effect are recruited (Fig. S7 B and C), the species’ range slowly
stretches beyond the threshold B*. Parameters and subplot descriptions are the same as in Fig. 3—with the exception that the allelic effects are exponentially
distributed, with mean α=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=100

p
. (C) Note that, when allelic effects vary across loci, occasionally a cline may establish in a reverse direction, correcting a

substitution with a large effect on the trait mean. (D) As genetic variance VG increases toward the margins, it evolves to match the ever-steeper environmental
gradient: VG =bσ

ffiffiffiffiffi
Vs

p
(prediction shown in dashed line). Gradient in the central habitat is b= 0.12; σ2 = 1=2, Vs = 1=2, rm = 1.06, K = 50, μ=2 ·10−7, time = 100,000

generations (with the exception of the initial distribution of trait values, shown in light blue).
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Fig. S7. (A) Range expansion slows down near the threshold based on mean selection coefficient even when the allelic effects αi are nonuniform (black).
However, over very long times, further alleles with large effects can be recruited as they are under stronger selection, and species’ range expands a little
further. (Example from Fig. S6.) The extent of range expansion is only fully bounded by the substitution with the largest selection coefficient that can arise over
a given time. For comparison, the rate of range expansion with equal allelic coefficients with αi =α is given in gray (keeping all other parameters same; example
from Fig. 3). (B and C) Over time, genetic drift degrades clines with small allelic effects α. As more alleles with larger effect α contribute to adaptation, clines
become narrower and under stronger selection. Parameters are as in Fig. S6. Note that the average selection coefficient is s≡ α2=2Vs and in this example, s= α.
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Fig. S8. Adaptation may suddenly fail if dispersal is too large. The threshold for collapse of adaptation (dashed line, B*≈ 0.15 Nσ
ffiffi
s

p
) is weakly dependent on

dispersal: to the first order, the effect cancels. However, for our model, the strength of density dependence r* decreases with genetic variance [r* =VG=ð2VsÞ],
which in turn increases with σ [r*→bσ=ð2 ffiffiffiffiffi

Vs
p Þ]. When r*2=rm becomes smaller than 1, further increase in dispersal is detrimental as it brings the population

closer to the predicted threshold. This is because both B=bσ=ð ffiffiffiffiffiffiffiffi
2Vs

p
r*Þ and Nσ

ffiffi
s

p
=Kr*=ðrm   σ

ffiffi
s

p Þ are both dependent on r*—and the effects multiply. The scale
for the coloring is adjusted (different to Fig. 2) so that the differences in the rate of range expansion (light to dark blue) and contraction (orange to red) are
visible; gray dots again denote population that expanded less than one deme over 5,000 generations. Parameters are as follows: σ = ½0.1, 4.24�, b= 0.45, Vs = 1,
r* ≡ 1 hence rm = ½1.02, 1.95�; K = 28, μ= 4 ·10−7, α=

ffiffiffiffiffiffiffiffiffiffiffi
1=35

p
, time = 5,000 generations.
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Fig. S9. Alternatively, the threshold for range collapse can be expressed as b=αJ0.15 Nr*. The threshold holds well unless spacing between the clines, α=b, is
smaller than about 1=10—this reflects the limits of our simulation system rather than a biological boundary—the deme-spacing is fixed to Δx ≡ 1. Data and
their depiction are the same as in Fig. 2.

Fig. S10. Effect of mutation rate on the rate of range expansion and local genetic variance. (A) Rate of range expansion increases about linearly with
mutation rate μ per locus and generation (5 ·10−8 < μ< 10−3). When mutation becomes too high, then the rate of expansion first decelerates, and for yet higher
mutation rates (μJ10−2), the population starts to collapse (cf. ref. 1). Note that, in general, mutation rate per locus and generation is expected to be lower
than about 10−4 (SI: Individual-Based Model). (B) Local genetic variance VG increases with mutation rate. For low-to-moderate mutation rates, genetic variance
is maintained by mixing across the phenotypic gradient, VG =bσ

ffiffiffiffiffi
Vs

p
. The dashed curve gives the prediction bσ

ffiffiffiffiffi
Vs

p
+ 2μ  nlVs, which assumes the components of

genetic variance due to gene flow (first term) and mutation–selection balance (second term) combine additively, whereas all nl loci are at linkage equilibrium:
the mismatch between the dashed curve and the realized genetic variance implies that, with clinal variation, μ � s is not a sufficient condition for the con-
tribution of mutation to be negligible. The top dashed line gives the maximum variance possible, 1=4  nl   α

2 (where α is a phenotypic effect of a single sub-
stitution). With increasing variance, population density drops steadily (not shown): eventually, species’ range starts to contract and population collapses.
Parameters are as follows: b= 0.4, σ2 = 1=2, Vs =1=2, rm = 1.06, K = 50, α= s=0.01, 800 genes. Initial population spans over 100 demes, and population evolves
over 5,000 generations. For both plots, error bars give the SDs.
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