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Appendix A

Technical Details of Bias Calculations

There are general techniques for bias calculation (e.g., Wang et al., 1998, JASA 93, 249–

261), one of which involves comparing the correspondence between the observed data model

and the misspecified model when both models share the same structure. In this section, we

concentrate on the bias calculation for the SS and on a simple but representative joint model

that consists of a logistic primary model and a random intercept covariate process. The

bias analysis strategy is applicable to general joint models and bias calculations for the CS;

more complicated joint models require no additional procedures, but are potentially harder

to compute and may lead to more complicated results.

For simplicity let g = 1, mi = m, and Xi, α and β be scalars. Assume longitudinal data

W i = (Wi1, . . . ,Wim)T, i = 1, . . . , n, follow a random intercept model W i = 1Xi + U i,

where 1 is an m× 1 vector of 1’s, U i ∼ N (0,Σi) with Σi = σ2{(1− ρ)I + ρJ} for m×m

identity matrix I and J = 11T. That is, Σi has a compound symmetry structure. Let the

primary outcome Yi, i = 1, . . . , n, be binary and follow a logistic model pr(Yi = 1|Xi;θ) =

H(α + βXi).

For the assumed model, the estimating equation based on the GSS for the logistic primary

model is
n∑

i=1

(
ψαi(θ)

ψβi
(θ)

)
=

n∑
i=1

(
Yi − µi

(Yi − µi)(1
TΣ−1

i 1)−1(Si − β)

)
= 0,

where µi = H{α+(Si−β/2)(1TΣ−1
i 1)−1β}, and Si = 1TΣ−1

i W i +Yiβ. Notice the fact that

Σ−1
i = σ−2{(1 + ρ)I + ρJ}−1 = σ−2(1− ρ)−1{I − ρ(1− ρ +mρ)−1J}, then (1TΣ−1

i 1)−1 =
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σ2(1−ρ){1T1−ρ(1−ρ+mρ)−11TJ1}−1 = m−1σ2(1−ρ+mρ), and Si = σ−2(1+ρ)−1{1T−
ρ(1+ρ−mρ)−11TJ}W i +Yiβ = mσ−2(1−ρ+mρ)−1W i +Yiβ, where W i = m−1

∑m
j=1Wij.

Further, because the GSS is derived based on the true Σi, the correct estimating equation

based on the GSS for the logistic primary model is

n∑
i=1

(
ψαi

(θ)

ψβi
(θ)

)
=

n∑
i=1

(
Yi − µi

(Yi − µi)m
−1σ2(1− ρ+mρ)(Si − β)

)
= 0, (A.1)

where µi = H {α+m−1σ2(1− ρ+mρ)Siβ −m−1σ2(1− ρ+mρ)β2/2}, and Si = mσ−2(1−
ρ+mρ)−1W i + Yiβ.

Suppose the true Σi = σ2{(1 − ρ)I + ρJ} is incorrectly specified as ΣiA = σ2I (equiv-

alently, correlation is ignored by setting ρ = 0). Let θ∗ = (α∗, β∗)T denote the asymptotic

limit of θ̂∗ = (α̂∗, β̂∗)T which solves (A.1) when Σi is replaced by ΣiA (equivalently, θ̂∗ solves

the estimating equation based on the SS). Because (1TΣ−1
iA

1)−1 = σ2(1T1)−1 = m−1σ2,

SiA = 1TΣ−1
iA
W i + Yiβ∗ = mσ−2W i + Yiβ∗, and also SiA = Si + mσ−2ρ(m − 1)(1 − ρ +

mρ)−1W i + Yi(β∗ − β), we obtain the misspecified estimating equation that θ̂∗ solves is

n∑
i=1

(
ψαi

(θ∗)

ψβi
(θ∗)

)
=

n∑
i=1

(
Yi − µiA

(Yi − µiA)m−1σ2(SiA − β∗)

)
= 0, (A.2)

where µiA = H[α∗+m−1σ2Siβ∗ + {−m−1σ2Yiβ+ρ(m−1)(1−ρ+mρ)−1W i}β∗ + m−1σ2(Yi−
1/2)β2

∗ ], SiA = mσ−2W i + Yiβ∗, and W i = m−1
∑m

j=1Wij. Comparing ψαi
(θ∗) (or µiA) in

(A.2) with the true ψαi
(θ) (or µi) in (A.1), we see that coefficients for both β and β2 are

incorrectly specified in ψαi
(θ∗) and ψαi

(θ∗) contains extra terms involving Yi andW i. Similar

phenomena hold in ψβi
(θ∗).

Although no closed form expression corresponds θ∗ to θ based on (A.1) and (A.2),

we can numerically calculate θ∗ and the asymptotic bias of θ̂∗ when n → ∞. Note that

n−1
∑n

i=1 ψαi
(θ̂∗) → E{ψαi

(θ∗)} and n−1
∑n

i=1 ψβi
(θ̂∗) → E{ψβi

(θ∗)} in probability as

n → ∞. The random variables involved in ψαi
(θ̂∗) and ψβi

(θ̂∗) are Yi and W i = Xi + U i.
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To compute E{ψαi
(θ∗)} and E{ψβi

(θ∗)}, suppressing the subscripts i we first express all

terms in them as E{E(·|X,U)} where U = W −X and then approximate them in a Monte

Carlo manner by B−1
∑B

l=1E(·|Xl, U l) for some reasonably large number B, where Xl and

U l, l = 1, . . . , B, are samples drawn from their true distributions. From (A.2), we can show

that

E{ψαi
(θ∗)} = E

[
E{A1(Y,W,θ,θ∗)− A2(Y,W,θ,θ∗)}|X,U

]
,

E{ψβi
(θ∗)} = E

[
E{A3(Y,W,θ,θ∗)− A4(Y,W,θ,θ∗)}|X,U

]
,

where

A1(Y,W,θ,θ∗) = Y,
A2(Y,W,θ,θ∗) = H{α∗ +Wβ∗ +m−1σ2(Y − 1/2)β2

∗},
A3(Y,W,θ,θ∗) = YW,
A4(Y,W,θ,θ∗) = A2(Y,W,θ,θ∗){W +m−1σ2(Y − 1)β∗}.

To remove the randomness of Y , the binary outcome that follows the logistic model, for any

function A(Y,W,θ,θ∗), we have E{A(Y,W,θ,θ∗)|X,U} = A(Y = 1, X + U,θ,θ∗)H(α +

βX)+A(Y = 0, X+U,θ,θ∗){1−H(α+βX)}. The above strategy for computing θ∗ ensures

a very stable convergence, even with a moderately large number of replications M .

An interesting special case is when the number of longitudinal observations m is large. A

common conception is that the effect of measurement errors is eliminated when m→∞. We

note that this is not the case here. When m→∞, E{ψαi
(θ∗)|X,U} → H(α+βX)−H(α∗+

Wβ∗) and E{ψβi
(θ∗)|X,U} → W{H(α+ βX)−H(α∗ +Wβ∗)}. However, from the correct

equation (A.1), we can deduce that when both n → ∞ and m → ∞, E{ψαi
(θ)|X,U} →

H(α+βX){1−H(α+Wβ+ρσ2β2/2)+H(α+Wβ−ρσ2β2/2)}−H(α+Wβ−ρσ2β2/2) and

E{ψβi
(θ)|X,U} → W [H(α+ βX){1−H(α+Wβ + ρσ2β2/2) +H(α+Wβ − ρσ2β2/2)} −

H(α+Wβ − ρσ2β2/2)] + ρσ2βH(α+Wβ − ρσ2β2/2){1−H(α+ βX)}. This indicates that

even with a large cluster size m, θ∗ differs from θ unless the true correlation ρ = 0.

We performed a numerical illustration for this proposed computation of θ∗ for ρ varying

between 0 and 0.8 and for m ranging from 2 to ∞. The parameter configurations are
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θ = (α, β)T = (−2.5, 3)T and σ2 = 1. Letting random intercepts Xi ∼ N (0.5, 1), we

generatedXl, l = 1, . . . , B, from this normal distribution. Notice that var(U) = 1TΣi1/m
2 =

σ2{ρ + m−1(1 − ρ)}, thus U l, l = 1, . . . , B, are generated from N (0, σ2{ρ + m−1(1 − ρ)})
when m is finite and from N (0, σ2ρ) when m→∞. We chose a fairly large B = 200, 000.

Appendix B

Details Regarding Inference and Implementation

First Order Derivatives of Score Functions GSS and GCS for the Logistic Pri-

mary Model

Denote the GSS for the logistic primary model as ψS(Yi,W i,θ) =

(
ψS,α
ψ

S,β

)
. With

Si = DT
i Σ−1

i W i + Yiβ fixed, the first order partial derivatives of the GSS used in the

Newton-Raphson updating scheme are

∂ψS,α
∂αT |Si = µi(µi − 1)ZiZ

T
i

∂ψS,α
∂βT |Si = µi(µi − 1)Zi(Si − β)T(DT

i ΣiDi)
−1 =

(
∂ψ

S,β
∂αT |Si

)T

∂ψ
S,β

∂βT |Si = µi(µi − 1)(DT
i ΣiDi)

−1(Si − β)(Si − β)T(DT
i ΣiDi)

−1 − (Yi − µi)(D
T
i ΣiDi)

−1

With Si replaced by DT
i Σ−1

i W i +Yiβ, the first order partial derivatives of the GSS used

in the empirical sandwich estimator are

∂ψS,α
∂αT = µi(µi − 1)ZiZ

T
i

∂ψS,α
∂βT = µi(µi − 1)Zi{DT

i ΣiW i + (2Yi − 1)β}T(DT
i ΣiDi)

−1

∂ψ
S,β

∂αT = µi(µi − 1)(DT
i ΣiDi)

−1{DT
i ΣiW i + (Yi − 1)β}ZT

i

∂ψ
S,β

∂βT = µi(µi − 1)(DT
i ΣiDi)

−1{DT
i ΣiW i + (Yi − 1)β}{DT

i ΣiW i

+(2Yi − 1)β}T(DT
i ΣiDi)

−1 + (Yi − µi)(Yi − 1)(DT
i ΣiDi)

−1

Similarly, denote the GCS for the logistic primary model as ψC(Yi,W i,θ) =

(
ψC,α
ψ

C,β

)
.
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With Si fixed, the first order partial derivatives of the GCS used in the Newton-Raphson

updating scheme are

∂ψC,α
∂αT |Si = µi(µi − 1)ZiZ

T
i

∂ψC,α
∂βT |Si = µi(µi − 1)Zi(Si − β)T(DT

i ΣiDi)
−1

∂ψ
C,β

∂αT |Si = µi(µi − 1)(DT
i ΣiDi)

−1{Si + (Yi − 2µi)β}ZT
i

∂ψ
C,β

∂βT |Si = µi(µi − 1)(DT
i ΣiDi)

−1{Si + (Yi − 2µi)β}(Si − β)T(DT
i ΣiDi)

−1

−µi(Yi − µi)(D
T
i ΣiDi)

−1

With Si replaced byDT
i Σ−1

i W i +Yiβ, the first order partial derivatives of the GCS used

in the empirical sandwich estimator are

∂ψC,α
∂αT = µi(µi − 1)ZiZ

T
i

∂ψC,α
∂βT = µi(µi − 1)Zi{DT

i ΣiW i + (2Yi − 1)β}T(DT
i ΣiDi)

−1

∂ψ
C,β

∂αT = µi(µi − 1)(DT
i ΣiDi)

−1{DT
i ΣiW i + 2(Yi − µi)β}ZT

i

∂ψ
C,β

∂βT = µi(µi − 1)(DT
i ΣiDi)

−1{DT
i ΣiW i + 2(Yi − µi)β}{DT

i ΣiW i

+(2Yi − 1)β}T(DT
i ΣiDi)

−1 + (Yi − µi)
2(DT

i ΣiDi)
−1

A Summary of Implementation Procedure

In sum, the estimation of θ can be carried out in the following steps. First, combine

the individual longitudinal covariate processes (1) into the multivariate random effects for-

mulation (2). Second, obtain Σ̂i as in Section 5,1. Last, with Σi replaced by Σ̂i, either

directly perform the GSS and the GCS on (7) to (10) using the Newton-Raphson algorithm,

or adopt the re-parameterization procedure described in Section 5.2; both ways provide vir-

tually identical results. Alternatively, we can add a set of additional unbiased estimating

equations corresponding to the parameters in Σi to the GSS and GCS estimating equations

at (7) to (10) and then use the estimated parameters obtained in Section 5,1 as initial values

and solve the whole set of estimating equations using Newton-Raphson algorithm. We have

found this latter procedure more complicated with mostly incremental efficiency gains.
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Appendix C

Numerical Evaluation of the Effects of Violating the Independent Between-Process

Measurement Error Assumption

To numerically investigate the impact of the conditional independence assumption between

measurement errors from different longitudinal covariate processes on the inferences, we con-

sidered a simulation setup with two longitudinal processes, each of which had a compound

symmetry correlation structure for within-subject measurement errors. We also let the mea-

surement errors from the two longitudinal processes to be correlated when the measurements

were taken at the same time.

In particular, we generated one set of longitudinal data from the random intercept-

slope model W
(1)
ij = X1i + X2itij + U

(1)
ij , and another set of longitudinal data from the

random intercept model W
(2)
ij = X3i + U

(2)
ij , where tij = j − 1, j = 1, . . . ,m, (m = 10);

i = 1, . . . , n, (n = 500). The covariance of the measurement errors from the first longitu-

dinal process, U
(1)
i , is Ω

(1)
i = σ2{(1 − ρ1)Im + ρ1Jm} and the covariance of the measure-

ment errors from the second longitudinal process, U
(2)
i , is Ω

(2)
i = σ2{(1 − ρ2)Im + ρ2Jm},

where σ = 0.5 and ρ1 = ρ2 = 0.25. That is, the true Ω
(1)
i and Ω

(2)
i both have com-

pound symmetry structures. Further, the correlation between measurement errors from the

two longitudinal processes taken at the same time is equal to ρ12 = corr(U
(1)
ij , U

(2)
ij ) = 0.5.

This implies that the covariance for the overall measurement errors U i =
(
U

(1)
i

T
,U

(2)
i

T)T

is Σi =

(
Ω

(1)
i Ω

(1,2)
i

Ω
(1,2)
i Ω

(2)
i

)
, where Ω

(1,2)
i = σ2ρ12Im. Similar to the simulations in Sec-

tions 2 and 6, we designed four scenarios of the true (X1i, X2i)
T distribution: (1) a bi-

variate normal; (2) a bimodal mixture of normals with mixing proportion 30-70; (3) a

bivariate skew-normal with coefficients of skewness −0.10 and 0.85 for X1i and X2i, re-

spectively; and (4) a bivariate t5 distribution. For all (X1i, X2i)
T distribution scenarios,
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E(X1i) = E(X2i) = 0.5, var(X1i) = 1.0, var(X2i) = 0.64, and cov(X1i, X2i) = −0.2. X3i

was generated from N (0.5, 0.6). The primary binary observations Yi were generated from

logistic model pr(Yi = 1|X i) = [1 + exp {−(α + β1X1i + β2X2i + β3X3i)}]−1 with α = −3,

β = (β1, β2, β3)
T = (3, 2, 1)T. Five hundred data sets were generated for each (X1i, X2i)

T

distribution.

In the estimation procedures, we assume that measurement errors from two different

processes are independent, i.e., ignore the existence of ρ12. Like Tables 1 and 2 of Section 6,

we report values of RB (%, estimated relative bias in percentage), SD (Monte Carlo stan-

dard deviation), SE (average of estimated standard errors) and CP (Monte Carlo coverage

probability of 95% Wald confidence interval) under the four random effects distributional

scenarios, for CS, SS, GSS and GCS in Table S.3. The CS and the SS of Li et al. (2004)

require IID assumption on measurement errors and thus they ignore all correlations (ρ1,

ρ2, and ρ12). Here, the proposed GSS and GCS under the conditional independence as-

sumption only ignore the correlation across processes (ρ12). They accounted for the within

process correlations (ρ1 and ρ2) and were obtained via reparameterization of data using Ω
(1)
i

and Ω
(2)
i .

The results in Table S.3 show that in all cases, the GSS and the GCS with the condi-

tional independence assumption provide promising inferences in terms of negligible bias and

satisfactory coverage probabilities, although the measurement errors from different longitu-

dinal processes are in fact correlated. Similar to the results in Tables 1 and 2 of Section 6

and Tables S.1 and S.2, the performances of the SS and the CS are poor when the IID

assumption on measurement errors is violated. In general, they substantially underesti-

mate the parameters and their coverage probabilities fall below nominal level. We have also

adopted the re-parameterization procedure described in Section 5.2 using the true Σi and

obtained similar but no better numerical performances than those when ρ12 was assumed to
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be 0. However, this could be due to the fact that the parameters in Σi were not estimated.

In conclusion, the numerical study seems suggest that the proposed method is insensitive

toward the independent between-process measurement error assumption.
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Table S.1
Simulation results for the joint model with ρ = −0.25 under four underlying X i

distributions. In the logistic model, true α = −2.5 and β = (β1, β2)
T = (3.0, 2.0)T.

Reported values are RB, estimated relative bias (%); SD, Monte Carlo standard deviation;
SE, average of estimated standard errors; CP, Monte Carlo coverage probability of 95%

Wald confidence interval.

ρ = −0.25 Method RB (%) SD SE CP RB (%) SD SE CP

Xi Normal Xi Bimodal mixture

α̂ RRC 19.2 0.46 0.46 0.96 48.9 0.83 0.78 0.84
GRRC 1.7 0.32 0.32 0.96 14.9 0.45 0.44 0.94

SS 19.8 0.48 0.48 0.97 15.9 0.53 0.50 0.97
GSS 2.1 0.32 0.32 0.96 3.0 0.40 0.38 0.96
CS 19.7 0.48 0.49 0.96 17.1 0.56 0.52 0.97

GCS 2.0 0.32 0.32 0.96 3.0 0.40 0.39 0.96
β̂1 RRC 21.8 0.54 0.54 0.94 52.9 0.94 0.86 0.61

GRRC 1.5 0.34 0.35 0.96 19.1 0.47 0.45 0.86
SS 22.6 0.58 0.58 0.97 10.8 0.43 0.39 0.96

GSS 2.0 0.34 0.35 0.96 2.5 0.33 0.31 0.95
CS 22.4 0.58 0.58 0.96 11.7 0.45 0.41 0.98

GCS 2.0 0.35 0.35 0.96 2.5 0.33 0.31 0.95
β̂2 RRC 15.1 0.36 0.36 0.96 34.4 0.57 0.54 0.93

GRRC 1.7 0.27 0.27 0.96 11.2 0.35 0.34 0.94
SS 15.4 0.37 0.37 0.97 10.2 0.39 0.36 0.96

GSS 2.0 0.27 0.27 0.96 2.7 0.32 0.30 0.95
CS 15.2 0.36 0.38 0.96 11.1 0.40 0.37 0.96

GCS 2.0 0.27 0.27 0.96 2.7 0.32 0.30 0.95

Xi Skew-normal Xi Bivariate t5

α̂ RRC 18.9 0.46 0.46 0.96 11.1 0.41 0.41 0.97
GRRC 1.3 0.32 0.32 0.95 −3.7 0.30 0.30 0.92

SS 19.1 0.48 0.49 0.97 25.6 0.57 0.58 0.97
GSS 1.5 0.32 0.32 0.95 1.6 0.32 0.33 0.96
CS 18.2 0.50 0.47 0.96 25.0 0.54 0.57 0.94

GCS 1.5 0.32 0.32 0.95 1.6 0.32 0.33 0.96
β̂1 RRC 21.4 0.54 0.54 0.94 12.8 0.47 0.48 0.98

GRRC 1.1 0.34 0.35 0.95 −4.5 0.31 0.33 0.91
SS 21.6 0.56 0.58 0.97 29.4 0.70 0.71 0.97

GSS 1.3 0.34 0.35 0.96 1.5 0.35 0.37 0.96
CS 20.6 0.62 0.55 0.96 28.8 0.67 0.71 0.94

GCS 1.2 0.33 0.35 0.96 1.5 0.35 0.37 0.96
β̂2 RRC 14.9 0.36 0.36 0.96 8.4 0.34 0.34 0.97

GRRC 1.4 0.27 0.27 0.96 −2.7 0.27 0.26 0.93
SS 15.0 0.37 0.38 0.97 19.8 0.45 0.44 0.96

GSS 1.6 0.27 0.27 0.96 1.5 0.28 0.28 0.96
CS 14.4 0.37 0.36 0.96 19.3 0.43 0.44 0.95

GCS 1.6 0.27 0.27 0.96 1.5 0.28 0.28 0.96



Table S.2
Simulation results for the joint model with ρ = −0.50 under four underlying X i

distributions. The rest of the setup is identical to that of Table S.1.

ρ = −0.50 Method RB (%) SD SE CP RB (%) SD SE CP

Xi Normal Xi Bimodal mixture

α̂ RRC 37.6 0.62 0.62 0.88 74.2 1.14 1.11 0.78
GRRC 0.8 0.29 0.30 0.97 8.5 0.38 0.38 0.96

SS 35.9 0.63 0.66 0.91 25.0 0.58 0.57 0.95
GSS 0.9 0.29 0.30 0.96 1.9 0.35 0.36 0.96
CS 33.4 0.53 0.62 0.87 27.7 0.62 0.63 0.96

GCS 0.9 0.29 0.30 0.96 1.9 0.35 0.36 0.96
β̂1 RRC 42.9 0.77 0.76 0.80 76.0 1.30 1.23 0.42

GRRC 0.6 0.31 0.32 0.96 11.2 0.36 0.36 0.92
SS 41.4 0.80 0.82 0.89 16.1 0.44 0.43 0.96

GSS 0.7 0.31 0.32 0.96 1.7 0.29 0.29 0.96
CS 38.6 0.64 0.76 0.82 18.1 0.48 0.48 0.96

GCS 0.7 0.30 0.32 0.96 1.7 0.29 0.29 0.96
β̂2 RRC 29.4 0.47 0.47 0.93 51.1 0.76 0.74 0.93

GRRC 0.9 0.25 0.25 0.96 6.5 0.31 0.30 0.95
SS 27.7 0.48 0.49 0.94 15.2 0.40 0.40 0.95

GSS 1.0 0.25 0.25 0.96 1.9 0.29 0.29 0.95
CS 25.6 0.41 0.46 0.92 17.1 0.42 0.43 0.95

GCS 1.0 0.25 0.25 0.96 1.9 0.29 0.29 0.95

Xi Skew-normal Xi Bivariate t5

α̂ RRC 37.5 0.65 0.62 0.86 28.2 0.54 0.55 0.93
GRRC 0.5 0.30 0.30 0.95 −3.1 0.28 0.29 0.93

SS 35.4 0.64 0.65 0.91 48.0 0.76 0.84 0.89
GSS 0.5 0.29 0.30 0.95 −0.1 0.29 0.30 0.96
CS 32.7 0.53 0.59 0.87 41.8 0.63 0.75 0.79

GCS 0.5 0.29 0.30 0.95 −0.1 0.29 0.30 0.95
β̂1 RRC 42.9 0.80 0.76 0.79 32.5 0.64 0.67 0.91

GRRC 0.3 0.30 0.32 0.95 −3.8 0.29 0.31 0.92
SS 40.6 0.78 0.80 0.90 55.7 0.98 1.10 0.83

GSS 0.2 0.30 0.32 0.96 −0.3 0.30 0.33 0.96
CS 37.7 0.62 0.72 0.83 48.5 0.82 0.95 0.71

GCS 0.2 0.29 0.31 0.96 −0.4 0.30 0.33 0.96
β̂2 RRC 29.2 0.48 0.47 0.93 21.6 0.42 0.42 0.95

GRRC 0.7 0.25 0.25 0.96 −2.2 0.25 0.26 0.94
SS 27.0 0.46 0.48 0.95 36.4 0.56 0.61 0.93

GSS 0.7 0.25 0.25 0.96 0.1 0.26 0.26 0.95
CS 25.0 0.40 0.44 0.91 31.6 0.47 0.55 0.88

GCS 0.7 0.25 0.25 0.96 0.1 0.26 0.26 0.95



Table S.3
Simulation results for the joint model with the correlation between measurement errors from

two longitudinal processes taken at the same time to be ρ12 = 0.5 under four underlying
(X1i, X2i)

T distributions. Each longitudinal process has compound symmetry structure for
within-subject measurement errors. In the logistic model, true α = −3 and

β = (β1, β2, β3)
T = (3, 2, 1)T. Reported values are RB, estimated relative bias (%); SD,

Monte Carlo standard deviation; SE, average of estimated standard errors; CP, Monte
Carlo coverage probability of 95% Wald confidence interval. The GSS and the GCS are

obtained under the conditional independence assumption.

Method RB (%) SD SE CP RB (%) SD SE CP

(X1i, X2i)T Normal (X1i, X2i)T Bimodal mixture

α̂ SS −14.9 0.31 0.29 0.60 −13.5 0.36 0.36 0.74
GSS 1.8 0.47 0.43 0.95 2.4 0.51 0.49 0.96
CS −14.8 0.31 0.29 0.60 −13.6 0.36 0.35 0.74

GCS 1.9 0.47 0.42 0.95 2.5 0.52 0.49 0.96
β̂1 SS −14.6 0.28 0.26 0.55 −7.3 0.27 0.27 0.84

GSS 2.9 0.44 0.40 0.95 3.4 0.37 0.36 0.97
CS −14.6 0.28 0.26 0.55 −7.3 0.27 0.27 0.84

GCS 3.0 0.44 0.40 0.96 3.5 0.38 0.36 0.97
β̂2 SS −11.2 0.24 0.23 0.78 −7.2 0.28 0.26 0.88

GSS 2.9 0.33 0.30 0.95 4.1 0.36 0.33 0.96
CS −11.2 0.24 0.23 0.78 −7.3 0.28 0.26 0.88

GCS 3.0 0.32 0.30 0.94 4.2 0.36 0.33 0.95
β̂3 SS −22.3 0.19 0.18 0.71 −23.3 0.22 0.21 0.77

GSS −3.0 0.27 0.25 0.93 −2.9 0.30 0.28 0.94
CS −22.3 0.19 0.18 0.71 −23.4 0.22 0.21 0.77

GCS −3.0 0.26 0.25 0.94 −2.7 0.30 0.28 0.93

(X1i, X2i)T Skew-normal (X1i, X2i)T Bivariate t5

α̂ SS −15.1 0.28 0.29 0.63 −17.0 0.29 0.29 0.55
GSS 1.4 0.41 0.42 0.96 2.3 0.45 0.44 0.96
CS −15.0 0.28 0.29 0.63 −17.0 0.29 0.29 0.55

GCS 1.5 0.41 0.42 0.96 2.3 0.45 0.44 0.96
β̂1 SS −15.0 0.27 0.26 0.55 −17.8 0.26 0.26 0.43

GSS 2.3 0.41 0.40 0.95 3.1 0.45 0.43 0.95
CS −15.0 0.27 0.26 0.54 −17.7 0.26 0.26 0.44

GCS 2.3 0.41 0.40 0.95 3.1 0.44 0.43 0.95
β̂2 SS −11.0 0.22 0.23 0.77 −13.6 0.23 0.23 0.73

GSS 2.8 0.29 0.30 0.98 3.2 0.33 0.32 0.96
CS −11.0 0.22 0.23 0.77 −13.5 0.23 0.23 0.73

GCS 2.9 0.30 0.30 0.98 3.2 0.33 0.32 0.96
β̂3 SS −21.6 0.17 0.18 0.77 −21.8 0.18 0.17 0.71

GSS −2.2 0.23 0.24 0.95 −2.7 0.24 0.23 0.95
CS −21.6 0.17 0.18 0.77 −21.7 0.18 0.17 0.72

GCS −2.1 0.23 0.24 0.95 −2.7 0.24 0.23 0.94
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Figure S.1. Scatter Plots of Individual Longitudinal BMI versus Time. The main text of
each plot contains the subject’s ID and the number of observations from that subject. The
fitted regression line is superimposed. The last individual (by order of ID number) of each
group in which the subjects share the same number of BMI observations were selected. The
number of observations per group in this figure ranges from 4 to 24.


