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1 METHODS 

1.1 Initial feature selection algorithm 
The initial feature selection algorithm is a multi-step iterative algorithm 

that selects increasing number of features from the initial set of 1,100 fea-
tures.  For training, the algorithm utilizes a balanced set of 8,000 samples 
(4,000 * 2) from SYN4000.  And for testing, it relies on a balanced set of 
842 samples (421 * 2) from TRAINNG, we call it TsS.   
Starting with an empty set of selected features (SSF), for each step, the 
algorithm iterates 5,000 times to find the “best” set of 3 features that com-
plement those in SSF.  For each of these 5,000 iterations: 
• Three features are selected at random from the ISF 1,100 features, 

excluding those in SSF. 
• These 3 selected features are used with those already in SSF to train a 

RBF SVM with default parameters (C, Gamma). 
• TsS is scored and an AUC is computed.  
At the end of each step, the three features with the highest AUC are consid-
ered the “best” and permanently added to SSF.  
The AUC value increases with each three added features until a point 
where it starts to drop.  The algorithm terminates at that point. 

We selected an initial set of 39 features in 13 steps.   

1.2 Feature selection algorithm 
The feature selection algorithm is a 5 steps iterative algorithm designed 

to select exactly N features out of the ISF 1,100 features. 
• With SVMT, the algorithm utilizes TRAINING in cross-validation X5 

for training and testing. 
• With SVMS, it utilizes SYN4000 for training and TRAINNG for 

testing. 
For both models, a RBF SVM is trained on a balanced sample, and then 
sequences are scored with either the F1 or  F21 scoring function.   
• In the first step, j=1: for each iteration i <= X[1], a set S of N features 

is selected at random from ISF.  The model is trained, test data is 
scored, and a wAUC is computed.  At the end of the first step, the set 
of features S with the highest wAUC, wAUCmax, is retained as Smax.  

• In each of the following steps, 1< j <= 5: at each iterations i <= X[j], 
a number of features NF[j] <= N is selected at random from ISF, ex-
cluding those in the current Smax, and the remaining N – NF[j] fea-
tures are selected at random from Smax. If the resulting wAUC is 
greater than wAUCmax, Smax is replaced by S and wAUCmax by wAUC.  

• At the end of the fifth step, the set of features with the highest wAUC, 
Smax, is projected as the selected set of features. 

F1 residue scoring is used in all steps j < 5, and F2 is used in the fifth step. 
NF values are set such that:  

𝑁 𝐹 𝑗 =
𝑁 , 𝑓 𝑜 𝑟    𝑗 = 1

𝑁 𝐹 𝑗 − 1 , 𝑓 𝑜 𝑟    𝑗 > 1  

  
1 F1 and F2 were introduced in the main paper section 2.6 

 
The values of NF and X are assigned properly according to N, for example, 
at N = 12: 
o X[1] = 4,000;  X[2] = 3,000;  X[3] = 2,000;  X[4] = 1,000; and  X[5] 

= 20,000. 
o NF[1] = 12,  NF[2] = 8,  NF[3] = 5,  NF[4] = 4, and  NF[5] = 3. 

1.3 Identifying the appropriate model complexity us-
ing TEST 

Sequences in TOTAL enclose patterns that are more frequent than ran-
dom.  Some of these patterns, we call information patterns, are concentrat-
ed in MoRFs and Flanks.  Additional patterns, we call noise patterns, are 
enriched in non-MoRF sections.  Information patterns are used by the train-
ing process to identify MoRFs.   

The effect of splitting of TOTAL on homology: In the construction of 
balanced training data (section 1.1 and main paper section 2.3), positive 
samples are always chosen from MoRFs and their surrounding Flanks.  
And negative samples are chosen at random from the remaining sections of 
the proteins.  Since two thirds of the sequences in TOTAL are homologous 
to one or more sequences in TOTAL splitting TOTAL on homology creates 
a significant imbalance in the frequencies of information patterns between 
TRAINING and TEST.  It is a zero sum with respect to TOTAL; those 
underrepresented information patterns in TRAINING/TEST, are overrepre-
sented in TEST/TRAINING.  We are going to call those patterns that are 
underrepresented in TRAINING and overrepresented in TEST tsPatterns.  
While maximizing its objective on TRAINING, the feature selection pro-
cess drifts towards to or away from tsPatterns.  Giving that each set of 
features is selected with about 30K iterations on TRAINING, even at ex-
treme drifts towards tsPatterns, tsPatterns will continue to be under-fitted 
with respect to TOTAL, perhaps to a lesser degree.   

These stochastic drifts generate randomness, reflected in the form of dis-
crepancy in trends of the model performance between the wAUC of TEST 
and TRAINING (main paper, figures 2). 

2 RESULTS 

2.1 Feature selection and appropriate model complexity 
identification 

For SVMS, we have two candidate sets to choose from: 
• First, the set with only two features, it is the smallest in size, its 

wAUC on TEST is the second highest and its wAUC on 
TRAINING is the lowest. It is interesting to note that the 
performance of this set on TEST is higher than on TRAINING. 
Theoretically, the performance on the training set should always be 
higher than that on the test set because the training process fits 
some of the training noise patterns.  However, since TRAINING 
and TEST are not selected from the general population using the 
same distribution function, MoRFs in TEST happened to be more 
identifiable than those in TRAINING. Thus, when only few 
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features are used, the training process would not be able to fit much 
of TRAINING noise, and its performance on TEST became higher 
than that on TRAINING. 

• Second, the set with fourteen features, which happened to have 
high fitting quality. Its wAUC on TEST is the highest with a small 
gap between wAUC on TEST and wAUC on TRAINING. 

Thus, which of these two sets performance generalizes better?  After ana-
lyzing the performance of different sets of features using multiple query 
sequences, we concluded that sets with very few features, although can 
generate high overall performances, their outcome is uneven and subjective 
to the query sequences having appropriate values of those features in use.  
Therefore we chose the second set. 

2.2 Selected Features 
 
- SVMS Features 
CHOP780213: Frequency of the 2nd residue in turn. 
MUNV940104: Free energy in beta-strand region. 
PALJ810112: Normalized frequency of beta-sheet in alpha/beta class. 
BULH740101: Transfer free energy to surface. 
BUNA790101: Alpha-NH chemical shifts. 
AURR980114: Normalized positional residue frequency at helix termini 
C2. 
RACS820101: Average relative fractional occurrence in A0(i). 
AURR980116: Normalized positional residue frequency at helix termini 
Cc. 
RICJ880101: Relative preference value at N". 
VINM940101: Normalized flexibility parameters (B-values), average. 
VINM940103: Normalized flexibility parameters (B-values) for each resi-
due surrounded by one rigid neighbor. 
RACS820108: Average relative fractional occurrence in AR(i-1). 
QIAN880109: Weights for alpha-helix at the window position of 2. 
GUYH850101: Partition energy. 
 
SVMT Features 

MIYS990101: Relative partition energies derived by the Bethe approxima-
tion. 
CHAM820102: Free energy of solution in water, kcal/mole. 
PONP800106: Surrounding hydrophobicity in turn. 
KOEP990102: Beta-sheet propensity derived from designed sequences. 
PONP800104: Surrounding hydrophobicity in alpha-helix. 
AURR980105: Normalized positional residue frequency at helix termini 
Nc. 
WEBA780101: RF value in high salt chromatography. 
ROBB760112: Information measure for coil. 
ZASB820101: Dependence of partition coefficient on ionic strength. 
PALJ810106: Normalized frequency of turn from CF. 
KUHL950101: Hydrophilicity scale. 
NAGK730101: Normalized frequency of alpha-helix. 
RACS820103: Average relative fractional occurrence in AL(i). 
CHAM820102: Free energy of solution in water, kcal/mole. 

2.3 MoRFs vs SLiMs 
 
Short linear motifs SLiMs are defined as conserved sequence stretches of 
3 to 10 amino acids that are enriched in IDRs (Weatheritt, et al 2012) and 
promote interactions with specific domains. Molecular recognition fea-
tures (MoRFs) are 10–70 residues loosely structured protein regions with-
in IDRs that bind to structured proteins (Mohan et al. 2006).  Hence, 
MoRFs are on average longer than SLiMs. Figure S4 shows a histogram of 
the size distribution of the MoRFs in TRAINIG/TEST and ELMs from the 
ELM database (Dinkel, H. et al. 2013). While MoRFs  and  SLiMs  gener-
ally share  many features,  e.g. they  are  more  hydrophobic than  their  
surroundings,  and  more conserved (Fuxreiter  et al. 2007;  Mészáros  et al. 
2009;  Disfani et al. 2012),  utilizing these features in identifying candidate 
binding locations is only feasible with MoRFs.  SLiMs’ shorter size in-
creases the noise  to  signal  level  and renders  these features  unusable.   
Thus, SLiMs are modeled with regular expressions and computationally 
identified using direct alignment tools  (Neduva  and Russel 2005)  such as 
blast  (Altschul, S. et al. 1997)  and  HMMer  (Eddy,  S.R.  1998).   
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Suppl. Fig. S1.  The average values and standard deviation (as error bars) for selected features.  (Top) the SVMS features, and (bottom) the SVMT 
features. Feature names are the Amino Acid Index Accession number preceded by two characters “F:” indicating it was generated from flanks, and M:” 
indicating it was generated from a MoRF.  Features are sorted from left to right on their descending average values. 
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Suppl. Fig. S2 ROC curves of TEST (left) and NEW (right) datasets for the three predictors; MoRFCHiBi in red, MoRFpred in green, and ANCHOR in 
blue. The two dotted lines show the performance of each of MoRFCHiBi two component predictors. The full ROC curve is at the top, and the lower left corner 
of the curve is at the bottom. Vertical axis is the true positive rate TPR and horizontal axis is the false positive rate FPR. 
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Suppl. Fig S3.  The Grids for SVMT (left) and SVMS (right) generated using the initial set of 39 selected features. Each line starts with its Gamma, and 
each column starts with its C value.  Cells in each grid holds AUC values and are divided into three groups, blue cells have the lowest AUC values, gray are 
with mid-range values and red cells holds the highest values. In each grid, the selected cell is in bold and its parameters are highlighted in yellow. 
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Suppl. Fig S4.  Size distribution of SLiMs and MoRFs. SLiMs (1,590 instances) were taken from the Eukaryotics Linear Motif database (Dinkel, H. et 
al. 2013) and MoRFs from TRAINING and TEST. The x axis represents the length and the y axis the percentage of occurrence. 
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