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Longitudinal Association Mapping Models Using Di-allelic Markers

Assume that I di-allelic markers Mj, j = 1, 2, · · · , I are typed in a region of the trait locus Q. For

marker Mj, the two alleles are denoted by Mj and mj with frequencies PMj
and Pmj

, respectively

(note here the notation Mj can be either marker or allele, whichever applies). Suppose that markers

Mj are in Hardy-Weinberg equilibrium (HWE). However, they may be in LD. Denote the measure

of LD between trait locus Q and marker Mj by DMjQ = P (MjQ1) − q1PMj
, and the measure of

LD between marker Mj and marker Mk by DMjMk
= P (MjMk) − PMj

PMk
, j, k = 1, 2, · · · , I [Hartl

and Clark, 1989; Hedrick, 1987; Lewontin, 1988]. Here P (MjQ1) and P (MjMk) are frequencies of

haplotypes MjQ1 and MjMk, respectively.

Consider a population sample with N individuals. For the i-th individual, let yi be his/her

quantitative trait value and let Gij be his/her genotype at the marker Mj. A temporal LD regression

mixed model extending (2) in the main text at the time t can be defined as

yi(t) = µ(t) + wi(t)
τβ(t) +

I∑
j=1

xijαj(t) +
I∑

j=1

zijδj(t) + Ui(t) + Ei + ϵi. (S.1)

The components of the above model are specified as follows. First, µ(t) is a non-random overall mean

at time t and µ(t) is unspecified; wi(t) is a row vector of covariates such as gender, BMI at the time

t, and possible their interaction terms; β(t) is a non-random column vector of regression parameters

of the covariates wi(t) with fixed effects. One may want to notice that the covariates can be time

invariant like gender or can be time varying such as the BMI. In addition, xij and zij are dummy

variables defined by

xij =


2 if Gij = MjMj

1 if Gij = Mjmj

0 if Gij = mjmj

and zij =


−P 2

mj
if Gij = MjMj

Pmj
PMj

if Gij = Mjmj

−P 2
Mj

if Gij = mjmj

, (S.2)

and αj(t) and δj(t) are regression coefficients of the dummy variables xij and zij at the time t.

In model (S.1), Ui(t) is the correlation effect among repeated measurements of both genetic and

environmental factors of an individual, Ei is a random variation of subject i, and ϵi is a random
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measurement error term. Assume that Ui(t), Ei, and ϵi are independent. Moreover, assume that Ei

is normal N(0, σ2
E) and ϵi is normal N(0, σ2

e).

The above formulation is, of course, a general framework. In the context of population data,

some of these components may be confounded. In addition, some of the components may need to

be removed from the analysis. For instance, assume that the dominance effects are not significantly

present. Then model (S.1) can be simplified to

yi(t) = µ(t) + wi(t)β(t) +
I∑

j=1

xijαj(t) + Ui(t) + Ei + ϵi. (S.3)

A similar character process model was developed by Pletcher and Geyer (1999) and Jafferzic and

Pletcher (2000), which does not measure effects from specific genes and uses no marker information.

The novel part of model (S.1) (or model (S.3)) is that we include measured genotype components

estimating association with genotyped markers, i.e., the terms involves xij and zij (or xij) [Fan and

Jung, 2003; Fan et al., 2005; Fan and Xiong, 2002; Fan and Xiong, 2003; Jung et al., 2005]. Let the

additive and dominance variance-covariance matrices of the indicator variables defined in (S.2) be

VA = 2


PM1Pm1 DM1M2 · · · DM1MI

DM1M2 PM2Pm2 · · · DM2MI

...
... · · · ...

DM1MI
DM2MI

· · · PMI
PmI

 , VD =


P 2
M1

P 2
m1

D2
M1M2

· · · D2
M1MI

D2
M1M2

P 2
M2

P 2
m2

· · · D2
M2MI

...
... · · · ...

D2
M1MI

D2
M2MI

· · · P 2
MI

P 2
mI

 . (S.4)

Such as equation (5) in Jung et al. [2005], the analytical formulas of parameter estimates of models

(S.1) and (S.3) at the time t can be obtained as

α1(t)
...

αI(t)

 = V −1
A

 2DM1Q
...

2DMIQ

αQ(t) and

 δ1(t)
...

δI(t)

 = V −1
D


D2

M1Q
...

D2
MIQ

 δQ(t). (S.5)

From equations (S.5), it is clear that the parameters of LD (i.e., DMjQ and DMjMk
) and gene effects

at the time t (i.e., αQ(t) and δQ(t)) are contained in the mean coefficients. Hence, models (S.1) and

(S.3) simultaneously take care of the LD and the effects of the putative trait locus Q. Moreover, the

interaction between the genetic effects and time or age is modeled.

In the models (S.1) and (S.3), the markers Mj, j = 1, 2, · · · , I, are assumed to be located in a

region of a single trait locus Q. This assumption can be removed, i.e., the markers can be from
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different regions of one chromosome or even from different chromosomes. In one region, there can be

one or more trait loci. Thus, the multiple trait loci jointly affect the phenotype. For most interest

genetic traits, this is a realistic assumption. Similar arguments as above can be done to justify the

models, but notations and formulations can be more complex and we don’t provide the details in

this article.

Longitudinal Association Mapping Models Using Multi-allelic Markers

In a region of the QTL Q, suppose that multiple multi-allelic markers are typed, which may be

micro-satellite markers. For simplicity, we use two marker A and B in our analysis, but the models

and methods can be easily generalized to use multiple markers. Suppose that the markers A and B

are in HWE. Let us denote the alleles of marker A by A1, · · · , Aa, where a is the number of alleles.

Let the frequency of Ai be PAi
, i = 1, 2, · · · , a. There are JA = a(a+ 1)/2 possible genotypes, which

can be listed as A1A1, · · · , AaAa, A1A2, · · · , A1Aa, · · · , Aa−1Aa. The marker B has b alleles denoted

by B1, · · · , Bb. Let the frequency of allele Bk be PBk
, k = 1, 2, · · · , b. There are JB = b(b + 1)/2

possible genotypes, which can be listed as B1B1, · · · , BbBb, B1B2, · · · , B1Bb, · · · , Bb−1Bb.

Again, consider a population sample with N individuals. For the i-th individual, let yi be his/her

quantitative trait value with genotype GAi at marker A and genotype GBi at marker B. Following

Fan et al. [2006], consider the following “genotype effect model” under normality

yi(t) = µ(t) + wi(t)β(t) +
a−1∑
j=1

xAijαAj(t) +
b−1∑
j=1

xBijαBj(t)

+
∑

1≤j<l≤a

zAijlδAjl(t) +
∑

1≤j<l≤b

zBijlδBjl(t) + Ui(t) + Ei + ei, (S.6)

where the dummy variables xAij, zAijl, xBij and zBijl are defined by

xAij =


2 if GAi = AjAj

1 if GAi = AjAl, l ̸= j
0 else

, zAijl =


−P 2

Al
if GAi = AjAj

PAj
PAl

if GAi = AjAl, j ̸= l
−P 2

Aj
if GAi = AlAl

0 else

,

xBij =


2 if GBi = BjBj

1 if GBi = BjBl, l ̸= j
0 else

, zBijl =


−P 2

Bl
if GBi = BjBj

PBj
PBl

if GBi = BjBl, j ̸= l
−P 2

Bj
if GBi = BlBl

0 else

, (S.7)

and αAj(t), αBj(t), δAjl(t), δBjl(t) are regression coefficients of the dummy variables at the time t. The
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other terms of model (S.6) are similar as those of model (S.1). Model (S.6) takes both additive and

dominance effects into account [Fan et al., 2006]. Such as model (S.3), model (S.6) can be modified

to an “additive effect model” if only the additive effect is modeled, i.e.,

yi(t) = µ(t) + wi(t)β(t) +
a−1∑
j=1

xAijαAj(t) +
b−1∑
j=1

xBijαBj(t) + Ui(t) + Ei + ei. (S.8)

In the following, we show that the parameters of LD and gene effects are contained in the regres-

sion coefficients. Models (S.6) and (S.8) take care of both the LD and the effects of the trait locus

Q. They are valid temporal models to fit association between genetic markers and the trait.

Let xAij, xBij, zAijl and zBijl be the dummy variables defined by relations (S.7). Denote XA =

(xA11, · · · , xA1(a−1))
τ , XB = (xB11, · · · , zB11(b−1))

τ , andXA∪B = (Xτ
A, X

τ
B)

τ . Let us denote the additive

variance-covariance matrix of the dummy variables by VA = Cov(XA∪B, XA∪B) = E (XA∪BX
τ
A∪B)−

E XA∪B(E Xτ
A∪B). Similarly, let ZA = (zA112, · · · , zA11a, zA123, · · · , zA12a, · · · , zA1(a−1)a))

τ , ZB =

(zB112, · · · , zB11b, zB123, · · · , zB12b, · · · , zB1(b−1)b))
τ , and ZA∪B = (Zτ

A, Z
τ
B)

τ . Let us denote the domi-

nance variance-covariance matrix of the indicator variables zA1ij, zB1kl by VD = Cov(ZA∪B, ZA∪B).

For i = 1, 2, · · · , a, let us denote DAiQ = P (Q1Ai) − q1PAi
, which are measures of LD between

QTL Q and marker A. Here P (Q1Ai) is the frequency of haplotype Q1Ai. For k = 1, 2, · · · , b, let

us denote DBkQ = P (Q1Bk) − q1PBk
, which are measures of LD between QTL Q and marker B.

Here P (Q1Bi) is the frequency of haplotype Q1Bi. For i = 1, 2, · · · , a, k = 1, · · · , b, let us denote

DAiBk
= P (AiBk)− PAi

PBk
, which are measures of LD between markers A and B. Here P (AiBk) is

frequency of haplotype AiBk.

Such as Appendix V, Fan et al. [2006], we can show that the regression coefficients of models

(S.8) and (S.6) are given by



αA1(t)
...

αA(a−1)(t)
αB1(t)

...
αB(b−1)(t)


= (VA/2)

−1



DA1Q
...

DAa−1Q

DB1Q
...

DBb−1Q


αQ(t)
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δA12(t)
...

δA(a−1)a(t)
δB12(t)

...
δB(b−1)b(t)


= V −1

D



[PA2DA1Q − PA1DA2Q]
2

...
[PAa−1DAaQ − PAaDAa−1Q]

2

[PB2DB1Q − PB1DB2Q]
2

...
[PBb−1

DBbQ − PBb
DBb−1Q]

2


δQ(t). (S.9)

The elements of matrices VA and VD are provided in Appendix V, Fan et al. [2006]. Equations

(S.9) show that the parameters of LD (i.e., DAiQ and DBkQ) and gene effects (i.e., αQ(t) and δQ(t))

are contained in the regression coefficients. The gene substitution effect αQ(t) is contained only

in αAj, αBj; and the dominance effect δQ(t) is contained only in δAjl(t), δBjl(t). Thus, VA is called

additive variance-covariance matrix; and VD is called dominance variance-covariance matrix. The

model (S.6) orthogonally decomposes genetic effect into summation of additive and dominance effects.

Analysis of FHS Data from GAW 13

For the trait of systolic blood pressure, Levy et al. (2000) performed a genome-wide linkage analysis

of FHS data and identified a multi-allelic locus GATA25A04 (D17S1299) on chromosome 17 which

shows strong linkage with a high LOD score 3.8. We concerned about the association between systolic

blood pressure and genotypes of the locus GATA25A04 over people’s age. At the locus GATA25A04,

there are 8 alleles (184, 188, 192, 196, 200, 204, 208, 212). We investigated the temporal trend of

systolic blood pressure related to genetic information, age, and sex. After a thorough model selection

by fitting linear mixed model in R [Pinheiro and Bates, 2000], we got a final model as

yij = µ0 + tijµage + t2ijµage2 + t3ijµage3 + sexiβsex

+xi,188α0 + xi,188tijαage + xi,188t
2
ijαage2 + xi,188t

3
ijαage3 + Ui(tij) + Ei + eij, (S.10)

where xi,188 =


2 if Gi = 188/188
1 if Gi = 188/∗
0 else

is the number of allele 188 in the genotype Gi of subject i, and

∗ represents the alleles other than allele 188.

The variance estimations are σ̂2
E = 11.212 and σ̂2

S = 12.822, and correlation range ρ̂ = 1.84. The

regression results of model (S.10) are presented in Table S.1. In addition, we presented in Table S.1

the regression results of the following model

yij = µ0 + tijµage + t2ijµage2 + t3ijµage3 + sexiβsex + xi,188α0 + Ui(tij) + Ei + eij, (S.11)
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which does not include the time-dependent variables xi,188tij, xi,188t
2
ij, and xi,188t

3
ij. From the results

of model (S.11) in Table S.1, we can see that allele 188 has no significant effect on the SBP since the

high p-value 0.28. However, all three time-dependent variables xi,188tij, xi,188t
2
ij, and xi,188t

3
ij have

significant effects on SBP at a significance level 0.05 for model (S.10). Therefore, it is important to

include the time-dependent genetic variables in the analysis. Ignoring time trends in genetic effects

can make the model invalid.

To understand the temporal trend of SBP, Figure S.1 provides the predicted SBP vs age for male

and female, separately. The predicted SBP of male is 4.95 higher than that of female. Interestingly,

the allele 188 at locus GATA25A04 almost has no effect on SBP for age interval of (25, 40). How-

ever, it does have positive effect for SBP when one’s age is older than 40. The allele 188 at locus

GATA25A04 can be a risk genetic variant since it may lead to higher SBP for middle aged and old

people.

In models (S.10) and (S.11), we do not include the random spline variables uk and vk as these of

spline models (8) and (9) in the main text. We did fit the models by using spline models (8) and

(9), but none of them significantly improves the fitting. Hence, none of them is included in the final

model. We also fitted non-parametric linear penalized spline models, but they failed to detect the

genetic effect of allele 188 although the random term
∑K

k=1 uk(tij − κk)+ provides significant result.
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Table S.1: Association results of blood systolic pressure and marker GATA25A04 (D17S1299) for
Framingham Heart Study Data, Genetic Analysis Workshop 13.

Model Coefficient Estimates Std Error t-value P-value

µ0 130.12519 0.5845056 222.62 < 0.0001
µage 0.58538 0.0205328 28.51 < 0.0001
µage2 0.00312 0.0007050 4.43 < 0.0001
µage3 -0.00015 0.0000312 -4.96 < 0.0001

Model βsex -4.95030 0.7489797 -6.61 < 0.0001
(S.10) α0 2.56019 1.4748975 1.74 0.08

αage 0.15237 0.0665988 2.29 0.02
αage2 -0.00418 0.0021415 -1.95 0.05
αage2 -0.00023 0.0000944 -2.45 0.01
µ0 130.21348 0.5829787 223.36 < 0.0001
µage 0.59855 0.0197430 30.32 < 0.0001

Model µage2 0.00273 0.0006753 4.04 0.0001
(S.11) µage3 -0.00018 0.0000297 -5.97 < 0.0001

βsex -4.94591 0.7488726 -6.60 < 0.0001
α0 1.44832 1.3486853 1.07 0.28

The overall likelihood ratio test of model (S.10) vs. model (S.11)
to test H0 : αage = αage2 = αage3 = 0 is 9.09, df = 3, p-value = 0.0281.
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(b) Predicted Systolic Blood Pressure Vs. Age for Female
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Figure S.1: Predicted systolic blood pressure against age in years for Male and Female by marker
GATA25A04 (D17S1299) and sex, based on parametric model (S.10).
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