Multiple MoS2 Transistors for Sensing Molecule Interaction Kinetics

Hongsuk Nam1, † , Bo-Ram Oh1, † , Pengyu Chen¹ , Mikai Chen¹ , Sungjin Wi¹ , Wenjie Wan² , Katsuo Kurabayashi¹ , and Xiaogan Liang,1*

¹ Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109

² University of Michigan-Shanghai Jiao Tong University Joint Institute and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

*Contact Email: xiaoganl@umich.edu

† These authors contributed equally

Supporting Information

Figure S1. Protocol for functionalizing a $MoS₂$ transistor sensor with anti-human TNF- α antibody receptors for detecting TNF- α molecules: (1) Immerse the HfO₂-coated MoS₂ transistor sensor into a 5% APTES solution and incubate for 1 hour. (2) The $HfO₂$ surface silanized with APTES reacts with a 5% solution of glutaraldehyde (GA) in phosphate buffered saline (PBS) for 2 hours, followed by rinsing with PBS buffer. (3) The $HfO₂$ surface is then incubated with an anti-human TNF- α antibody solution for 1 hour. (4) The as-functionalized sensor is incubated with TNF- α solutions with incremental concentrations (2 hours for each concentration) for studying the sensor responses at the equilibrium state and the affinity of the antibody-(TNF- α) pair, or the device is subjected to a TNF- α flow in a microfluidic channel for quantifying the time-dependent association/dissociation kinetics of the antibody- $(TNF-\alpha)$ pair.

Figure S2. The dual-gate thin-film transistor biosensor model: The binding of TNF- α molecules with the antibody receptors functionalized on the $HfO₂$ effective layer can cause a potential change ($\Delta\Phi$) on this effective layer. $\Delta\Phi$ can be evaluated using Δ *HfO*2 *TNF C* $\Delta \Phi = \frac{qN_{\text{TNF}}}{q}$, where *q* is the

effective charge brought to the HfO₂ effective layer through a single antibody-(TNF- α) binding event (here, q is the effective charge sensed by the transistor, and the screening effect due to the electrical double layer in solvent has been involved into q); N_{TNF} is the total number of TNF- α molecules bound to the HfO₂ effective layer; C_{HfO2} is the total capacitance of the HfO₂ effective layer. This $\Delta\Phi$ induces a change in the conductive charge ($\Delta Q = C_{HfO2} \Delta\Phi$) in the MoS₂ channel. This ΔQ can cause a shift of the threshold voltage (ΔV_T) measured from the back gate (note: not measured from the top gate), and ΔV_T can be evaluated by $\Delta V_T = \Delta Q/C_{SiO2} = (C_{HfO2}/C_{SiO2})\Delta \Phi =$ *SiO*2 *TNF C* $\frac{qN_{\text{TNF}}}{q}$, where C_{SiO2} is the capacitance of the back-gate dielectric layer. Furthermore, N_{TNF} can

be calculated using $N_{TNF} = \sigma_{TNF} A$, where σ_{TNF} is the areal density of bound TNF- α molecules on

the effective layer and *A* is the total sensor area. C_{SiO2} can be calculated using C_{SiO2} = $k_{SiO2} \epsilon_0 A/d_{SiO2}$, where d_{SiO2} and k_{SiO2} are the thickness and dielectric constant of the SiO₂ back-gate dielectric layer, respectively; *ε0* is the vacuum permittivity. Therefore,

$$
\Delta V_T = \frac{qN_{\text{TNF}}}{C_{\text{SjfO2}}} = \frac{qd_{\text{SiO2}}\sigma_{\text{TNF}}}{k_{\text{SiO2}}\varepsilon_0}.
$$

Figure S3. Linear-regime sensor responses at the equilibrium state: The transfer characteristics of five different MoS₂ transistor sensors measured at various biodetection stages, following the sequence of (1) bare transistor, (2) antibody functionalization, and inputs of $TNF-\alpha$ solutions with concentrations of (3) 60 fM, (4) 300 fM, (5) 600 fM, (6) 3 pM, and (7) 6 pM. The calibrated linear-regime sensor responses from these five devices are plotted in Fig. 3 (b) with respect to TNF- α concentration.

Figure S4. Subthreshold-regime sensor responses at the equilibrium state: The transfer characteristics of five different MoS₂ transistor sensors measured at various biodetection stages,

following the sequence of (1) bare transistor, (2) antibody functionalization, and inputs of TNF- α solutions with concentrations of (3) 60 fM, (4) 300 fM, (5) 600 fM, (6) 3 pM, and (7) 6 pM. The calibrated subthreshold-regime sensor responses from these five devices are plotted in Fig. 4 (b) with respect to TNF- α concentration.

Figure S5. A negative control test of the detection specificity of $MoS₂$ transistor biosensors: The transfer characteristics of a control sensor measured at stages of (1) bare transistor, (2) antibody functionalization (still functionalized with anti-human TNF- α antibody receptors), and inputs of IL-6 solutions with concentrations of (3) 600 fM and (4) 6 pM.

Figure S6. Transfer characteristics of four different MoS₂ transistor biosensors measured before the input of TNF- α samples, from which the subthreshold-swing (*SS*) parameters were acquired for normalizing the real-time subthreshold-regime sensor responses (Equation (5)). These sensors were utilized to quantify the real-time kinetics of antibody- $(TNF-\alpha)$ binding under different TNF- α concentrations (*n*) of (a) 60 fM, (b) 600 fM, (c) 3 pM, and (d) 6 pM. The operation points (OP, *i.e.*, the fixed V_G and V_{DS} values, under which a real-time response curve was measured) are also labelled by the red arrows.

Figure S7. Sensor responses measured in the subthreshold regime of a MoS₂ transistor biosensor with a 60 nm thick HfO_2 effective layer (*i.e.*, $t_{HfO2} = 60$ nm): (a) transfer characteristics of the $MoS₂$ transistor sensor with $t_{HfO2} = 60$ nm, which were measured from a set of incremental TNF- α concentrations (*i.e.*, $n = 0$, 60 fM, 300 fM, 600 fM, 3 pM, and 6 pM; (b) The calibrated subthreshold-regime responses (S) measured from this sensor (labelled as red stars) with respect to TNF-a concentration (*n*). This *S-n* relationship measured from this sensor with t_{HfO2} =60 nm is consistent with those measured from the sensors with $t_{\text{HfO2}} = 30$ nm. This result proves that the calibrated sensor response values do not strongly depend on the HfO₂ effective layer thickness.