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Web Appendix: MCMCAlgorithm for Latent Class Two-Part Model

We describe the MCMC algorithm for the two-part random intercept model applied in Section 5. As
in Section 5, we assume the same predictors, X, for both the binomial and lognormal components.

Starting with initial values for model parameters, the algorithm iterates through the following
steps until convergence (as determined by MCMC diagnostics):

1. Update γk: The full conditional for r-dimensional vector γk (k = 2, . . . ,K) is given by

π(γk|·) ∝
n∏
i=1

[Pr(Ci = k|γk)]
I(Ci=k) π(γk)

=
∏

i:Ci=k

(
ew
′
iγk∑K

h=1 e
w′iγh

)
Nr[γk; 0, (9/4)Ir],

where Nr(γk; ·) is an r-dimensional normal distribution evaluated at γk. Since this full
conditional distribution does not have a closed form, we update γk as a vector using a random
walk Metropolis algorithm based on a multivariate-t3(sgT k) proposal density centered at the
previous value, γoldk . To improve mixing, we apply the adaptive proposal (AP) developed by
Harrio et al. (2005), which uses the empirical covariance from an extended burn-in period
to tune T k so that it emulates the true posterior covariance. The parameter sg scales the
covariance to achieve an optimal acceptance rate of approximately 20%. As a default value,
we choose sg = 2.4/

√
r as recommended by Gelman, Roberts, and Gilks (1996).

2. Update Ci: For i = 1, . . . , n, draw Ci from its full conditional

π(Ci|·) = Pr(Ci = k|·) = Cat(pik), where

pik =
πik(γk)

[∏ni
j=1 f(yij |αk,βk,bi, τ2k )

]
N2(bi; 0,Σk)∑K

h=1 πih(γh)
[∏ni

j=1 f(yij |αh,βh,bi, τ2h)
]

N2(bi; 0,Σh)
,

πik(γ) = Pr(Ci = k|γk) as given in step (1), and bi = (b1i, b2i)
′. If there are no class-

membership covariates [i.e., r = 1 in Step (1)], then update πk directly from a Dirichlet(n1 +
e1, . . . , nK+ek) distribution, where e1, . . . , eK are prior hyperparameters and nk =

∑n
i=1 I(Ci=k).
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To avoid label switching in this case, Lenk and DeSarbo (2000) recommend sampling from
an ordered Dirichlet distribution with π1 < π2 < · · · < πK . See Appendix C of their paper
for details.

3. Update αk: First, consider a probit link for the binomial component of equation (1). Note
that Pr(yij > 0|Ci = k,αk, b1i) = Φ(x′ijαk + b1i) is equivalent to assuming yij = I(uij>0),
where [uij |Ci = k,αk, b1i] ∼ N(x′ijαk + b1i, 1) for all i, j such that Ci = k. To update αk,
we employ the data-augmentation algorithm described in Albert and Chib (1993) by first
drawing uij from its full conditional

π(uij |yij , Ci = k,αk, b1i) = N(x′ijαk+b1i, 1) truncated below (above) by 0 for yij > 0 (yij = 0),

and then drawing αk from its full conditional π(αk|uk,b1k) = Np(ηαk
,V αk

), where

V αk
=

(
Σ−1α +X ′kXk

)−1
and

ηαk
= V αk

[
Σ−1α µα +X ′k(uk − b1k)

]
.

Here, µα and Σα denote the prior mean and variance of αk (for the FEHB study, we optionally
assume the same prior hyperparameters for all classes); uk denotes an Nk × 1 vector of {uij}
draws for the Nk observations in class k; b1k denotes an Nk × 1 concatenated vector of
component-1 random intercepts for class k (i.e., b1i is repeated ni times for subject i ∈ class
k); and Xk is an Nk × p design matrix for class k.

For a logit link, one can use a similar data-augmentation approach, approximating the under-
lying logistic distribution by a mixture of normals as described in Frühwirth-Schnatter and
Frühwirth (2007). Alternatively, a Metropolis-Hastings step can be used to update αk.

4. Update βk: Let y∗k denote the Mk × 1 subvector of positive (i.e., nonzero) observations
in class k, let X∗k denote the corresponding design matrix, and let b∗2k denote an Mk × 1
concatenated vector of component-2 random intercepts restricted to observations greater than
zero. Assuming a N(µβ,Σβ), the full conditional for βk is

π(βk|·) = π(βk|y∗k,b∗2k, τ2k ) = Np(ηβk ,V βk),

where

V βk =
[
Σ−1β + τ−2k (X∗

′
kX

∗
k)
]−1

and

ηβk = V βk

{
Σ−1β µβ + τ−2k X∗

′
k [log(y∗k)− b∗2k]

}
.

5. Update τ−2k : Assuming a Ga(λ, δ) prior for τ−2k , draw τ−2k from its full conditional

π(τ−2k |·) = π(τ−2k |y
∗
k,βk,b

∗
2k)

= Ga

(
λ+Mk/2, δ +

1

2

[
log(y∗k)−X∗

′
k βk − b∗2k

]′ [
log(y∗k)−X∗

′
k βk − b∗2k

])
,

where Mk, y
∗
k, X

∗
k, and b∗2k are defined in step (4).
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6. Update Σk:

Assuming an IW(ν0,D0) prior, draw Σk from its full conditional

π(Σk|·) = π(Σk|bk) = IW(nk + ν0,D0 + b′kbk),

where nk =
∑n

i=1 I(Ci=k) denotes the number of subjects currently assigned to class k, and
bk is an nk × 2 matrix with the first column containing the component-1 random intercepts
and the second column containing the component-2 random intercepts for subjects in class k.

Repeat steps (3) - (6) for classes k = 1, . . . ,K.

7. Update bi: The full conditional for bi = (b1i, b2i)
′ is

π(bi|·) ∝ f(yi|Ci = k,αk,βk,bi, τ
2
k )N2(bi; 0,Σk).

Conditional on Ci = k, we update bi using a random walk Metropolis algorithm with a bi-
variate t3(sbRk) proposal centered at the previous value, boldi . The scale matrix Rk can be
estimated using the inverse information matrix obtained from a frequentist fit of the model,
and sb is a scaling factor used to achieve optimal acceptance rates. Note that, given Ci = k,
the acceptance ratio for updating bi is a function of the class-k parameters only.

WEB TABLES

Web Table 1
Model Comparison statistics for simulation study.

DIC Value‡

Number of Classes Average DIC∗ (SD) ∆† Lowest 2nd Lowest 3rd Lowest Highest

One Class 14205.12 (388.84) — 0 3 82 15
Two Class 13641.52 (516.62) 563.60 0 97 3 0
Three Class (True Model) 13330.95 (372.33) 310.57 100 0 0 0
Four Class 14572.18 (694.65) −1241.23 0 0 15 85

∗ Average DIC across 100 simulated datasets.
† Change in average DIC from previous model.
‡ Number of simulations in which model had lowest (most preferred) to highest (least preferred) DIC value.

Bold = lowest average DIC.

3



Web Table 2

Summary statistics for three-class model based on 100 simulated datasets.

Class (%)∗ Model Component Parameter True Mean Posterior 95% Coverage
(Variable Name) Value Estimate† (SD)

1 (31%) Binomial α11 (Intercept) 0.25 0.20 (0.21) 0.94
α12 (Linear Time) 0.50 0.51 (0.07) 0.95

Lognormal β11 (Intercept) 3.25 3.23 (0.14) 0.94
β12 (Linear Time) −0.75 −0.75 (0.02) 0.94

Variance Components τ21 (Lognormal Variance) 0.50 0.50 (0.02) 0.96

σ2
11 (Var[b1i]) 2.00 2.27 (0.86) 0.96

σ2
12 (Var[b2i]) 2.00 2.03 (0.25) 0.94
ρ1 (Corr[b1i, b2i]) 0.25 0.26 (0.15) 0.91

2 (26%) Binomial α21 (Intercept) 0.50 0.57 (0.16) 0.95
α22 (Linear Time) −0.50 −0.51 (0.05) 0.99

Lognormal β21 (Intercept) 2.25 2.25 (0.16) 0.96
β22 (Linear Time) 2.25 1.25 (0.06) 0.95

Variance Components τ22 (Lognormal Variance) 1.00 1.01 (0.06) 0.96

σ2
21 (Var[b1i]) 1.00 0.95 (0.30) 0.93

σ2
22 (Var[b2i]) 1.00 1.01 (0.25) 0.94
ρ2 (Corr[b1i, b2i]) −0.25 −0.22 (0.18) 0.98

3 (43%) Binomial α31 (Intercept) −0.50 −0.51 (0.16) 0.95
α32 (Linear Time) 0.50 0.50 (0.05) 0.93

Lognormal β31 (Intercept) 0.50 0.49 (0.15) 0.98
β32 (Linear Time) 0.50 0.50 (0.05) 0.99

Variance Components τ23 (Lognormal Variance) 1.50 1.50 (0.05) 0.95

σ2
31 (Var[b1i]) 1.50 1.58 (0.26) 0.94

σ2
32 (Var[b2i]) 0.50 0.52 (0.03) 0.93
ρ3 (Corr[b1i, b2i]) 0.00 0.03 (0.20) 0.94

Class Membership γ21 (Class 2 Intercept) −0.50 −0.55 (0.28) 0.96
Parameters γ22 (Class 2 Covariate, w) 0.50 0.52 (0.32) 0.94

γ31 (Class 3 Intercept) 0.75 0.82 (0.24) 0.92
γ32 (Class 3 Covariate, w) −0.75 −0.78 (0.28) 0.92

∗ Estimated class proportions averaged across the 100 simulated datasets. True proportions are 0.31, 0.26 and 0.43.
† Posterior means averaged across the 100 simulated datasets.
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WEB FIGURES
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Web Figure 1. Trace plots based on two MCMC chains for four representative parameters from
the three-class correlated model: (a) α22 (log odds use for year 2, class 2); (b) β22 (log-spending
for year 2, class 2); (c) γ22 (log-odds class-2 membership, females vs. males); (d) ρ2 (random effect
correlation, class 2). Horizontal lines denote posterior means.
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Web Figure 2. Enlarged view of classes 1 and 2 posterior trajectories.
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Web Figure 3. Results from posterior predictive checks: (a) posterior distribution of the propor-
tion of nonzero observations; (b) scatterplot of predicted versus observed chi-square discrepancy
measure across MCMC samples. In figure (a), the Bayesian predictive p-value (0.29) represents
the area in the shaded region; in figure (b), the Bayesian predictive p-value (0.37) represents the
proportion of samples above the diagonal.
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