Web-based supplementary materials for "A Bayesian two-part latent class model for longitudinal medical expenditure data: Assessing the impact of mental health and substance abuse parity"

by Brian Neelon, A. James O'Malley, and Sharon-Lise T. Normand

Web Appendix: MCMC Algorithm for Latent Class Two-Part Model

We describe the MCMC algorithm for the two-part random intercept model applied in Section 5. As in Section 5, we assume the same predictors, \boldsymbol{X} , for both the binomial and lognormal components.

Starting with initial values for model parameters, the algorithm iterates through the following steps until convergence (as determined by MCMC diagnostics):

1. **Update** γ_k : The full conditional for r-dimensional vector γ_k ($k = 2, ..., K$) is given by

$$
\pi(\boldsymbol{\gamma}_k|\cdot) \propto \prod_{i=1}^n [\Pr(C_i = k|\boldsymbol{\gamma}_k)]^{I_{(C_i=k)}} \pi(\boldsymbol{\gamma}_k)
$$

=
$$
\prod_{i:C_i=k} \left(\frac{e^{\boldsymbol{w}_i'\boldsymbol{\gamma}_k}}{\sum_{h=1}^K e^{\boldsymbol{w}_i'\boldsymbol{\gamma}_h}} \right) \mathrm{N}_r[\boldsymbol{\gamma}_k; \mathbf{0}, (9/4)\boldsymbol{I}_r],
$$

where $N_r(\gamma_k; \cdot)$ is an r-dimensional normal distribution evaluated at γ_k . Since this full conditional distribution does not have a closed form, we update γ_k as a vector using a random walk Metropolis algorithm based on a multivariate- $t_3(s_gT_k)$ proposal density centered at the previous value, γ_k^{old} . To improve mixing, we apply the adaptive proposal (AP) developed by Harrio et al. (2005), which uses the empirical covariance from an extended burn-in period to tune T_k so that it emulates the true posterior covariance. The parameter s_g scales the covariance to achieve an optimal acceptance rate of approximately 20%. As a default value, we choose $s_g = 2.4/\sqrt{r}$ as recommended by Gelman, Roberts, and Gilks (1996).

2. **Update** C_i : For $i = 1, ..., n$, draw C_i from its full conditional

$$
\pi(C_i|\cdot) = \Pr(C_i = k|\cdot) = \text{Cat}(p_{ik}), \text{ where}
$$
\n
$$
p_{ik} = \frac{\pi_{ik}(\gamma_k) \left[\prod_{j=1}^{n_i} f(y_{ij}|\alpha_k, \beta_k, \mathbf{b}_i, \tau_k^2) \right] N_2(\mathbf{b}_i; \mathbf{0}, \Sigma_k)}{\sum_{h=1}^K \pi_{ih}(\gamma_h) \left[\prod_{j=1}^{n_i} f(y_{ij}|\alpha_h, \beta_h, \mathbf{b}_i, \tau_h^2) \right] N_2(\mathbf{b}_i; \mathbf{0}, \Sigma_h)},
$$

 $\pi_{ik}(\gamma) = Pr(C_i = k|\gamma_k)$ as given in step (1), and $\mathbf{b}_i = (b_{1i}, b_{2i})'$. If there are no classmembership covariates [i.e., $r = 1$ in Step (1)], then update π_k directly from a Dirichlet $(n_1 +$ $e_1, \ldots, n_K + e_k$) distribution, where e_1, \ldots, e_K are prior hyperparameters and $n_k = \sum_{i=1}^n I_{(C_i=k)}$. To avoid label switching in this case, Lenk and DeSarbo (2000) recommend sampling from an ordered Dirichlet distribution with $\pi_1 < \pi_2 < \cdots < \pi_K$. See Appendix C of their paper for details.

3. Update α_k : First, consider a probit link for the binomial component of equation (1). Note that $Pr(y_{ij} > 0|C_i = k, \alpha_k, b_{1i}) = \Phi(x_{ij}' \alpha_k + b_{1i})$ is equivalent to assuming $y_{ij} = I_{(u_{ij} > 0)},$ where $[u_{ij} | C_i = k, \alpha_k, b_{1i}] \sim N(\boldsymbol{x}_{ij}^{\prime} \boldsymbol{\alpha}_k + b_{1i}, 1)$ for all i, j such that $C_i = k$. To update $\boldsymbol{\alpha}_k$, we employ the data-augmentation algorithm described in Albert and Chib (1993) by first drawing u_{ij} from its full conditional

$$
\pi(u_{ij}|y_{ij}, C_i = k, \alpha_k, b_{1i}) = \mathcal{N}(\mathbf{x}'_{ij}\alpha_k + b_{1i}, 1)
$$
 truncated below (above) by 0 for $y_{ij} > 0$ ($y_{ij} = 0$),

and then drawing α_k from its full conditional $\pi(\alpha_k|\mathbf{u}_k, \mathbf{b}_{1k}) = \mathrm{N}_p(\boldsymbol{\eta}_{\alpha_k}, \boldsymbol{V}_{\alpha_k}),$ where

$$
\begin{array}{rcl}\n\boldsymbol{V}_{\alpha_k} & = & \left(\boldsymbol{\Sigma}_{\alpha}^{-1} + \boldsymbol{X}_k' \boldsymbol{X}_k\right)^{-1} \text{ and} \\
\boldsymbol{\eta}_{\alpha_k} & = & \boldsymbol{V}_{\alpha_k} \left[\boldsymbol{\Sigma}_{\alpha}^{-1} \boldsymbol{\mu}_{\alpha} + \boldsymbol{X}_k' (\boldsymbol{u}_k - \boldsymbol{b}_{1k})\right].\n\end{array}
$$

Here, μ_{α} and Σ_{α} denote the prior mean and variance of α_k (for the FEHB study, we optionally assume the same prior hyperparameters for all classes); u_k denotes an $N_k \times 1$ vector of $\{u_{ij}\}\$ draws for the N_k observations in class k; \mathbf{b}_{1k} denotes an $N_k \times 1$ concatenated vector of component-1 random intercepts for class k (i.e., b_{1i} is repeated n_i times for subject $i \in$ class k); and \mathbf{X}_k is an $N_k \times p$ design matrix for class k.

For a logit link, one can use a similar data-augmentation approach, approximating the underlying logistic distribution by a mixture of normals as described in Frühwirth-Schnatter and Frühwirth (2007). Alternatively, a Metropolis-Hastings step can be used to update α_k .

4. **Update** β_k : Let y_k^* denote the $M_k \times 1$ subvector of positive (i.e., nonzero) observations in class k, let X_k^* denote the corresponding design matrix, and let \mathbf{b}_{2k}^* denote an $M_k \times 1$ concatenated vector of component-2 random intercepts restricted to observations greater than zero. Assuming a $N(\mu_{\beta}, \Sigma_{\beta})$, the full conditional for β_k is

$$
\pi(\boldsymbol{\beta}_k|\cdot) = \pi(\boldsymbol{\beta}_k|\boldsymbol{y}^*_k,\mathbf{b}^*_{2k},\tau_k^2) = \mathrm{N}_p(\boldsymbol{\eta}_{\beta_k},\boldsymbol{V}_{\beta_k}),
$$

where

$$
\mathbf{V}_{\beta_k} = \left[\mathbf{\Sigma}_{\beta}^{-1} + \tau_k^{-2} (\mathbf{X}_k^{*'} \mathbf{X}_k^*) \right]^{-1} \text{ and}
$$

$$
\boldsymbol{\eta}_{\beta_k} = \mathbf{V}_{\beta_k} \left\{ \mathbf{\Sigma}_{\beta}^{-1} \boldsymbol{\mu}_{\beta} + \tau_k^{-2} \mathbf{X}_k^{*'} \left[\log(\mathbf{y}_k^*) - \mathbf{b}_{2k}^* \right] \right\}.
$$

5. Update τ_k^{-2} k_k^{-2} : Assuming a Ga (λ, δ) prior for τ_k^{-2} τ_k^{-2} , draw τ_k^{-2} \bar{k} ⁻² from its full conditional

$$
\pi(\tau_k^{-2}|\cdot) = \pi(\tau_k^{-2}|\mathbf{y}_k^*, \boldsymbol{\beta}_k, \mathbf{b}_{2k}^*)
$$

= Ga $\left(\lambda + M_k/2, \delta + \frac{1}{2}\left[\log(\mathbf{y}_k^*) - \mathbf{X}_k^{*'}\boldsymbol{\beta}_k - \mathbf{b}_{2k}^{*}\right]'\left[\log(\mathbf{y}_k^*) - \mathbf{X}_k^{*'}\boldsymbol{\beta}_k - \mathbf{b}_{2k}^{*}\right]\right),$

where M_k , \mathbf{y}_k^* , \mathbf{X}_k^* , and \mathbf{b}_{2k}^* are defined in step (4).

6. Update Σ_k :

Assuming an IW(ν_0, D_0) prior, draw Σ_k from its full conditional

$$
\pi(\boldsymbol{\Sigma}_k|\cdot) = \pi(\boldsymbol{\Sigma}_k|\mathbf{b}_k) = \mathrm{IW}(n_k + \nu_0, \boldsymbol{D}_0 + \mathbf{b}_k'\mathbf{b}_k),
$$

where $n_k = \sum_{i=1}^n I_{(C_i=k)}$ denotes the number of subjects currently assigned to class k, and \mathbf{b}_k is an $n_k \times 2$ matrix with the first column containing the component-1 random intercepts and the second column containing the component-2 random intercepts for subjects in class k .

Repeat steps (3) - (6) for classes $k = 1, ..., K$.

7. **Update** \mathbf{b}_i : The full conditional for $\mathbf{b}_i = (b_{1i}, b_{2i})'$ is

$$
\pi(\mathbf{b}_i|\cdot) \propto f(\mathbf{y}_i|C_i=k,\boldsymbol{\alpha}_k,\boldsymbol{\beta}_k,\mathbf{b}_i,\tau_k^2)N_2(\mathbf{b}_i;\mathbf{0},\boldsymbol{\Sigma}_k).
$$

Conditional on $C_i = k$, we update \mathbf{b}_i using a random walk Metropolis algorithm with a bivariate $t_3(s_b R_k)$ proposal centered at the previous value, \mathbf{b}_i^{old} . The scale matrix R_k can be estimated using the inverse information matrix obtained from a frequentist fit of the model, and s_b is a scaling factor used to achieve optimal acceptance rates. Note that, given $C_i = k$, the acceptance ratio for updating \mathbf{b}_i is a function of the class-k parameters only.

WEB TABLES

Model Comparison statistics for simulation study.									
			$\rm DIC~Value^{\ddagger}$						
Number of Classes	Average DIC^* (SD)	Δ^{\intercal}	Lowest	2 nd Lowest	$3rd$ Lowest	Highest			
One Class	14205.12 (388.84)				82	15			
Two Class	13641.52 (516.62)	563.60		97					
Three Class (True Model)	13330.95 (372.33)	310.57	100						
Four Class	14572.18 (694.65)	-1241.23			15	85			

Web Table 1

[∗] Average DIC across 100 simulated datasets.

† Change in average DIC from previous model.

‡ Number of simulations in which model had lowest (most preferred) to highest (least preferred) DIC value. Bold = lowest average DIC.

Summary statistics for three-class model based on 100 simulated datasets.							
Class $(\%)^*$	Model Component	Parameter (Variable Name)	True Value	Mean Posterior Estimate ^{\dagger} (SD)	95% Coverage		
1(31%)	Binomial	α_{11} (Intercept)	0.25	0.20(0.21)	0.94		
		α_{12} (Linear Time)	$0.50\,$	0.51(0.07)	$0.95\,$		
	Lognormal	β_{11} (Intercept)	$3.25\,$	3.23(0.14)	0.94		
		β_{12} (Linear Time)	-0.75	$-0.75(0.02)$	0.94		
	Variance Components	τ_1^2 (Lognormal Variance)	0.50	0.50(0.02)	0.96		
		$\sigma_{11}^2 \, (\text{Var}[b_{1i}])$	2.00	2.27(0.86)	0.96		
		$\sigma_{12}^2 \, (\text{Var}[b_{2i}])$	$2.00\,$	2.03(0.25)	0.94		
		$\rho_1 \left(\text{Corr}[b_{1i}, b_{2i}] \right)$	$0.25\,$	0.26 (0.15)	$\rm 0.91$		
2(26%)	Binomial	α_{21} (Intercept)	0.50	0.57(0.16)	0.95		
		α_{22} (Linear Time)	-0.50	$-0.51(0.05)$	0.99		
	Lognormal	β_{21} (Intercept)	$2.25\,$	2.25(0.16)	0.96		
		β_{22} (Linear Time)	$2.25\,$	1.25(0.06)	0.95		
	Variance Components	τ_2^2 (Lognormal Variance)	1.00	1.01(0.06)	$\rm 0.96$		
		σ_{21}^2 (Var[b _{1i}])	1.00	0.95(0.30)	0.93		
		$\sigma_{22}^2 \left(\text{Var}[b_{2i}] \right)$	1.00	1.01(0.25)	0.94		
		$\rho_2 \left(\text{Corr}[b_{1i}, b_{2i}] \right)$	-0.25	$-0.22(0.18)$	0.98		
3(43%)	Binomial	α_{31} (Intercept)	-0.50	$-0.51(0.16)$	0.95		
		α_{32} (Linear Time)	$0.50\,$	0.50(0.05)	$0.93\,$		
	Lognormal	β_{31} (Intercept)	0.50	0.49(0.15)	0.98		
		β_{32} (Linear Time)	$0.50\,$	0.50(0.05)	0.99		
	Variance Components	τ_3^2 (Lognormal Variance)	1.50	1.50(0.05)	0.95		
		$\sigma_{31}^2 \, (\text{Var}[b_{1i}])$	1.50	1.58(0.26)	0.94		
		$\sigma_{32}^2 \, (\text{Var}[b_{2i}])$	0.50	0.52(0.03)	0.93		
		$\rho_3 \left(\text{Corr}[b_{1i}, b_{2i}] \right)$	0.00	0.03(0.20)	0.94		
	Class Membership	(Class 2 Intercept) γ_{21}	-0.50	$-0.55(0.28)$	0.96		
	Parameters	(Class 2 Covariate, w) γ_{22}	$0.50\,$	0.52(0.32)	0.94		
		γ_{31} (Class 3 Intercept)	0.75	0.82(0.24)	0.92		
		γ_{32} (Class 3 Covariate, w)	-0.75	$-0.78(0.28)$	0.92		

Web Table 2

[∗] Estimated class proportions averaged across the 100 simulated datasets. True proportions are 0.31, 0.26 and 0.43.

 † Posterior means averaged across the 100 simulated datasets.

WEB FIGURES

Web Figure 1. Trace plots based on two MCMC chains for four representative parameters from the three-class correlated model: (a) α_{22} (log odds use for year 2, class 2); (b) β_{22} (log-spending for year 2, class 2); (c) γ_{22} (log-odds class-2 membership, females vs. males); (d) ρ_2 (random effect correlation, class 2). Horizontal lines denote posterior means.

(a)

Year

Web Figure 2. Enlarged view of classes 1 and 2 posterior trajectories.

Web Figure 3. Results from posterior predictive checks: (a) posterior distribution of the proportion of nonzero observations; (b) scatterplot of predicted versus observed chi-square discrepancy measure across MCMC samples. In figure (a), the Bayesian predictive p-value (0.29) represents the area in the shaded region; in figure (b), the Bayesian predictive p-value (0.37) represents the proportion of samples above the diagonal.

References

- [1] Albert, J.H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88, 669–679.
- [2] Frühwirth-Schnatter, S. and Frühwirth, R. (2007). Auxiliary mixture sampling with applications to logistic models. Computational Statistics \mathcal{B} Data Analysis, 51, 3509–3528.
- [3] Gelman, A., Roberts, G.O., and Gilks, W.R. (1996). Efficient metropolis jumping rules. In J.M. Beruardo, J.O. Berger, A.E. Dawid, and A.F.M. Smith (eds), *Bayesian Statistics*, Volume 5, 599–607. Cambridge: Oxford University Press.
- [4] Harrio, H., Saksman, E., and Tamminen, J. (2005). Componentwise adaptation for high dimensional MCMC. Computational Statistics 20, 165-273.
- [5] Lenk, P.J. and DeSarbo, W.S. (2000). Bayesian inference for finite mixtures of generalized linear models with random effects. *Psychometrika* **65**, 93–119.