Additional file 3

1. DNA Amplification	p.1
2. DNA sequencing	p. 6
3. Establishment of consensus sequences	p.6

1. DNA amplification

Amplification of the HVSI from position 15914 - 9 (reference sequence GenBank V00654) was conducted using PCR primers that produce six overlapping fragments (hereinafter referred to as standard primer set). For 23 samples where amplification failed using the standard set, two alternate primer pairs were created that reduce amplicon length in favour of better amplification success. Primer sequences, positions, and annealing temperatures are given in Table 1. Figure 1 provides visualisation of the HVSI amplification strategy.

In 30 of 33 cases when a particular d-loop motif characteristic of this rare mtDNA clade was found (15,953 G and 16,255 C [1]), two additional amplicons outside the HVSI each covering a transversion (3,415 A and 10,717 T [1]) were amplified and sequenced. These additional fragments were also retrieved from eight previously published samples showing this motif and using remaining DNA extract (Ap7, God2, Mar10, Mf7, Sac3, Sac5, Sac7, Zag1 [2-4]). All of them, but none of the 14 other randomly chosen sequences from different haplogroups, show a full association with these transversions (see Table 2). We infer from this result that 15,953 G and 16,255 C alone can be considered as characteristic for haplogroup Q.

New primers were developed using the program PrimerSelect[™] (DNASTAR Lasergene[®] 7.1 and 8).

1

Table 1: Mitochondrial primers.

3' end positions are given according to reference sequence V00654. The names indicate upper (U) and lower (L) primer. The standard primer set covering the targeted HVSI region in six overlapping fragments is in bold. Primers U1b and L2c are alternatives to U1 and L2 with shorter amplicon length. U8 is an alternative to U4 and replaced the latter in the course of this study because of its better performance. Primer pairs A8U/A7L and A9U/A8L are alternatives to U5/L5 with shorter amplicon length. Additionally, both primers were designed specifically not to amplify Sus scrofa DNA due to mismatches at the 3' ends. As Sus scrofa DNA is a possible lab contaminant because of its presence in various reagents [5, 6], these alternative primers were used in the rare cases when the rather unspecific primer pair U5/L5 had first resulted in Sus scrofa sequences.

Name	Sequence in 5'-3'-direction	3' end position	Primer length	Amplicon length	Annealing temperature	Reference
BosU1	CCAAATATTACAAACACCACTAGCTAAC	15913	28 bp		•	
BosL1	GCATGGGGCATATAATTTAATGTACT	16005	26 bp	91 bp		[4]
BosU1b	GCTAACATAACACGCCCATACAC	15930	23 bp	74 bp	56°C	this study
BosU2	ΑΑΤGTACATAACATTAATGTAATAAAGACA	15992	20 bp			
BosL2	TTGACATAATGTACTATGTACAGTCAATAA	16077	30 bp	84 bp	52°C	[4]
BosL2c	TCATGTACTTGCTTATATGCATGG	16025	24 bp	32 bp	56°C	this study
BosU3	CCATGCATATAAGCAAGTACATGA	16048	24 bp			
BosL3	CTCGTGATCTAATGGTAAGGAATATATA	16131	28 bp	82 bp	52°C	[4]
BosU8	GTACATTATGTCAAATTCATTCTTGATAG	16121	29 bp	80 bp		this study
BosU4	ACTGTACATAGTACATTATGTCAAATTCAT	16112	30 bp			
BosL4	CGGAGCGAGAAGAGGGATC	16202	19 bp	89 bp	56°C	[4]
BosA8U	GTGAAACCAGCAACCCGCTA	16195	20 bp			
BosA7L	AATGAATTTTACCAGGCATCTGGTT	16249	25 bp	53 bp	56°C	
BosA9U	CCATAAACCGTGGGGGTCG	16242	19 bp			
BosA8L	TCTTCAGGGCCATCTCATCTAAAAC	16275	25 bp	34 bp	57°C	this study
BosU5	TACCATGCCGCGTGAAACCA	16184	20 bp			
BosL5	TGAGATGGCCCTGAAGAAAGAA	16272	22 bp	87 bp	56°C	
BosU6	GGTCGCTATCCAATGAATTTTAC	16260	23 bp			
BosL6	ATGTGTGAGCATGGGCTGATTA	10	22 bp	87 bp	56°C	[4]
BosQ1U	TGAATTCCCCTACCAATACCCTATCCTCTT	3385	30 bp			
BosQ1L	CATATCAAGCCTAGCCGTATACTCCATTCT	3421	30 bp	35 bp	60°C	
BosQ4U	CAGTTTGGCGACAACAGCCTTAAT	10681	24 bp			
BosQ4L	TTTTAACCATATGGCTCCTCCTCT	10728	25 bp	46 bp	58°C	this study

Lab Coc	3.415	10.717	Haplogi	Referer	
le			roup	ICe	
V00654	Α	Т	Т3		
Ар7	Т	Α	Q	Bollongino et al. 2006	
God2	Т	Α	Q	Bollongino et al. 2006	
Mar10	Т	Α	Q	Edwards et al. 2007	
Mf7	Т	Α	Q	Bollongino et al. 2012	
Sac3	Т	Α	Q	Bollongino et al. 2012	
Sac5	Т	Α	Q	Bollongino et al. 2012	
Sac7	Т	A	Q	Bollongino et al. 2012	
Zag1	T	A	Q	Bollongino et al. 2012	
Ap15	T	A	Q	this study	
Ap16	Т	A	Q	this study	
Ap17			13	this study	
Ber2	-	•	13	this study	
B013		A		this study	
	T	A 		this study	
	T	A		this study	
Dra2	T	Δ	0	this study	
Dra3	т	Δ	0	this study	
Dra4			ТЗ	this study	
Dra7	т	Δ	0	this study	
Dra8	т	Δ	0	this study	
Dra27	т	Δ	n n	this study	
Dra30			T2	this study	
Kan1			T3	this study	
Kan2			Т	this study	
Kan3			Т	this study	
Kan5	т	Α	Q	this study	
Kan7	Т	Α	Q	this study	
Kop1			T3	this study	
Kop12	т	Α	Q	this study	
Kov22	Т	Α	Q	this study	
Kov24	Т	Α	Q	this study	
Kov25	Т	Α	Q	this study	
Kov26	Т	Α	Q	this study	
Kov42			T3	this study	
Kov43	Т	Α	Q	this study	
Kov47	Т	Α	Q	this study	
Kov50	Т	Α	Q	this study	
Kov53	Т	Α	Q	this study	
Kov54	Т	Α	Q	this study	
Oko7	Т	Α	Q	this study	
Oko8	_	_	T3	this study	
Ovc6	<u> </u>	A	Q	this study	
Ovc8	T -	A	Q	this study	
UVC9	T -	A	Q	this study	
Pei8	T -	A	Q	this study	
Sam2		A	<u> </u>	tnis study	
Sam11		A	Q TO	triis study	
Sam13	-		12	triis study	
			12	this study	
01019			T	this study	
01020				this study	

Table2: Q specific transversions.

Results for two additional positions outside the HVSI characteristic for haplogroup Q (positions 3,415 and 10,717 according to reference sequence GenBank V00654.

Figure 1: Mitochondrial primer scheme

Dark green and red bars indicate the position of the standard primer set according to the reference sequence (blue bar, GenBank V00645). Bright green and red bars indicate the position of the alternate primer pairs as specified in Table 1. Numbers within bars indicate the name of the primer and the 3' end position. Numbers on the connections indicate sequence length of the amplified region with/without primer sequence.

Amplification reactions were set up as shown in Table 3. At least three successful independent PCRs from two extractions were attempted.

Blank controls were processed during each PCR. The enzyme Uracil-N-Glycosilase was added to about 5% of the PCRs to cleave deaminated cytosine residues from particularly damaged samples. Amplification was carried out in a Mastercycler gradient (Eppendorf). PCR products were visualized on an agarose gel by addition of ethidium bromide. PCR products were purified by incubation with the two enzymes Exonuclease I (2 U; Fermentas) and Shrimp Alkaline Phosphatase (0.3 U; Fermentas) for 45 min at 37°C, followed by heat inactivation for 15 min at 80 °C.

Table 3: PCR reagents and conditions.

Standard volumes and cycles are in bold. The protocol was sometimes modified in the given ranges to optimize amplification success. UNG was used only sporadically (see above).

Reagent	Volume (µl)	Concentration (stock solution)	Final concentration	PCR parameters	
PCR Gold Buffer (Applied Biosystems)	5- 6	10 x	1 x – 1.2 x	Initial activation	6 min 90°C
MgCl ₂ (Applied Biosystems)	4-6	25 mM	2 mM – 3 mM		
dNTP's (Qiagen)	1	10 mM	0.2 mM	Denaturation	40 sec 94°C
BSA (Roche)	1-2	20 mg/ml	0.4 μg/μl – 0.8 μg/μl	Annealing	40 sec (temp. see primers)
Primer, each (Biospring)	1	10 μM	0.2 μΜ	Elongation	40 sec 72°C
AmpliTaq Gold [®] (Applied Biosystems)	0.5 -1	5 U/μΙ	2.5 U – 5 U		
UNG (Invitrogen)	0.5	1 U/μl	0.5 U		
DNA	0.5-14	not determined	not determined		
UV-irradiated HPLC- H ₂ O (Acros Organics)	add 50			Cycles	50 -60

2. DNA sequencing

Cycle sequencing reactions were set up as shown in Table 4. Products were sequenced by capillary electrophoresis on an ABI PRISM[™] 3130 Genetic Analyzer (Applied Biosystems) using POP-6[™] polymer (Applied Biosystems).

Table 4: Cycle sequencing reagents and conditions.

Sequencing products were obtained using the BigDye[®] Terminator v.1.1 chemistry (Applied Biosystems). Volumes of PCR products were adjusted according to the intensity of their bands in the agarose gel.

Reagent	Volume (µl)	Concentration (stock solution)	Final concentration	PCR parameters	
Buffer	1.5	5 x	0.75 x	Denaturation	30 sec 92 °C
BigDye	1	na	na	Annealing	15 sec (temp. see primers)
Primers (Biospring)	1	10 μΜ	1μΜ	Elongation	2 min 30 sec 60°C
PCR product	1-4	not determined	not determined		
HPLC-H₂O (Acros Organics)	add 10			Cycles	25

3. Establishment of consensus sequences

Sequences were further analysed using the programs SeqMan[™] and MegAlign[™] (DNASTAR Lasergene[®] 7.1 and 8). At least three sequences obtained from independent PCRs from two independent DNA extractions per sample per primer pair were usually used to create a majority rule consensus sequence. If divergent positions occurred among the three sequences, we attempted to sequence further PCR products, at best obtained using UNG (see above), until the variable position was present in at least a 3:1 ratio.

Literature

- 1. Achilli A, Olivieri A, Pellecchia M, Uboldi C, Colli L, Al-Zahery N, Accetturo M, Pala M, Hooshiar Kashani B, Perego UA *et al*: **Mitochondrial genomes of extinct aurochs survive in domestic cattle**. *Current Biology* 2008, **18**(4):R157-158.
- 2. Bollongino R, Edwards CJ, Alt KW, Burger J, Bradley DG: **Early history of European domestic** cattle as revealed by ancient DNA. *Biology Letters* 2006, **2**(1):155-159.
- 3. Edwards CJ, Bollongino R, Scheu A, Chamberlain A, Tresset A, Vigne J-D, Baird JF, Larson G, Ho SYW, Heupink TH *et al*: **Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs**. *Proceedings of the Royal Society B: Biological Sciences* 2007, **274**(1616):1377-1385.
- 4. Bollongino R, Burger J, Powell A, Mashkour M, Vigne JD, Thomas MG: Modern Taurine Cattle descended from small number of Near-Eastern founders. *Molecular Biology and Evolution* 2012:doi:10.1093/molbev/mss1092.
- Leonard JA, Hofreiter M, Kreuz E, Hodges L, Ream W, Wayne RK, R.C. F: Animal DNA in PCR reagents plagues ancient DNA research. *Journal of Archaeological Science* 2007, 34:1361-1366.
- Geörg C: Paläopopulationsgenetik von Schwein und Schaf in Südosteuropa und Transkaukasien. ForschungsCluster1., vol. 9. Rahden/Westf: Verlag Marie Leidorf GmbH; 2013.