
## **Supplementary Figure 4**

a

| Δweight % (mean)          |            |       |       |        |        |        |        |        |       |       |       |       |       |       |       |
|---------------------------|------------|-------|-------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|
| Experimental days         | <b>D</b> 7 | D8    | D9    | D10    | D11    | D12    | D13    | D14    | D15   | D16   | D17   | D18   | D19   | D20   | D21   |
| NO DSS + vehicle          | 0,00       | 0,76  | 0,77  | 0,77   | 1,76   | 3,13   | 3,35   | 3,74   | 3,74  | 4,89  | 5,08  | 5,08  | 5,67  | 6,08  | 5,29  |
| NO DSS + InvColi-shCOX2   | 0,00       | 1,49  | 1,70  | 3,10   | 2,94   | 3,97   | 5,85   | 7,22   | 8,48  | 9,10  | 9,53  | 10,15 | 9,92  | 9,88  | 8,04  |
| DSS 1.5% + vehicle        | 0,00       | -4,19 | -7,68 | -12,09 | -19,26 | -17,94 | -18,53 | -16,40 | -7,32 | -4,13 | -1,98 | 0,02  | 0,63  | 0,38  | -0,78 |
| DSS 1.5% + InvColi-NC     | 0,00       | -6,00 | -5,85 | -10,69 | -15,50 | -14,83 | -10,83 | -7,10  | -6,85 | -7,07 | -3,64 | -3,42 | -2,96 | -2,51 | -0,45 |
| DSS 1.5% + InvColi-shCOX2 | 0,00       | -2,60 | -2,93 | -6,98  | -6,74  | -10,90 | -16,00 | -11,95 | -9,25 | -6,87 | -4,84 | -1,96 | 0,40  | 1,21  | 1,99  |



C

| Scores weight loss (mean ± SD) |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |
|--------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Experimental days              | <b>D</b> 7    | D8            | D9            | D10           | D11           | D12           | D13           | D14           | D15           | D16           | D17           | D18           | D19           | D20           | D21           |
| NO DSS + vehicle               | $0,0 \pm 0,0$ | $0.0 \pm 0.0$ | $0,0 \pm 0,0$ | $0.0 \pm 0.0$ | $0.0 \pm 0.0$ | $0.0 \pm 0.0$ | 0,0 ± 0,0     | $0.0 \pm 0.0$ | 0,0 ± 0,0     | 0,0 ± 0,0     |
| NO DSS + InvColi-shCOX2        | $0.0 \pm 0.0$ | $0.0 \pm 0.0$ | 0,0 ± 0,0     | $0.0 \pm 0.0$ | $0.0 \pm 0.0$ | $0.0 \pm 0.0$ | 0,0 ± 0,0     | $0.0 \pm 0.0$ | 0,0 ± 0,0     | 0,0 ± 0,0     |
| DSS 1.5% + vehicle             | $0.0 \pm 0.0$ | $0.8 \pm 0.5$ | 1,5 ± 0,7     | $2,4 \pm 0,4$ | $3,9 \pm 0,8$ | $3,6 \pm 0,5$ | 3,7 ± 0,7     | $3,3 \pm 0,5$ | $1,5 \pm 0,2$ | $0.8 \pm 0.2$ | $0,4 \pm 0,3$ | $0.0 \pm 0.3$ | $0.0 \pm 0.1$ | $0.0 \pm 0.3$ | 0,2 ± 0,4     |
| DSS 1.5% + InvColi-NC          | $0.0 \pm 0.0$ | $1.2 \pm 0.3$ | 1,2 ± 0,4     | $2,1 \pm 0,5$ | $3,1 \pm 0,7$ | $3.0 \pm 0.4$ | $2,2 \pm 0,8$ | 1,4 ± 0,5     | 1,4 ± 03      | 1,4 ± 0,2     | $0.7 \pm 0.2$ | $0.7 \pm 0.6$ | $0.6 \pm 0.3$ | $0.5 \pm 0.5$ | $0,1 \pm 0,2$ |
| DSS 1.5% + InvColi-shCOX2      | $0.0 \pm 0.0$ | $0.5 \pm 0.6$ | $0.6 \pm 0.4$ | $1.4 \pm 0.5$ | $1.3 \pm 0.6$ | $2,2 \pm 0,6$ | $3,2 \pm 0,9$ | $2,4 \pm 0,5$ | $1.9 \pm 0.3$ | 1,4 ± 0,2     | $1,0 \pm 0,3$ | $0.4 \pm 0.3$ | $0.0 \pm 0.5$ | $0.0 \pm 0.0$ | $0.0 \pm 0.0$ |

| Scores stool consistency (mean ± SD) |                                          |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                        |
|--------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|
| D7                                   | D8                                       | D9                                                                                                                                                                                  | D10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D11                                                  | D12                                                  | D13                                                  | D14                                                  | D15                                                  | D16                                                  | D17                                                  | D18                                                  | D19                                                  | D20                                                  | D21                                                    |
| 0,0 ± 0,0                            | 0,0 ± 0,0                                | 0,0 ± 0,0                                                                                                                                                                           | $0.0 \pm 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                        | 0,0 ± 0,0                                            | $0.0 \pm 0.0$                                        | 0,0 ± 0,0                                            | 0,0 ± 0,0                                              |
| 0,0 ± 0,0                            | 0,0 ± 0,0                                | 0,0 ± 0,0                                                                                                                                                                           | $0.0 \pm 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                        | 0,0 ± 0,0                                              |
| ,5 ± 0,5 2                           | 2,5 ± 0,5                                | 3,0 ± 0,0                                                                                                                                                                           | 3,0 ± 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $3.0 \pm 0.0$                                        | 3,0 ± 0,0                                            | 3,0 ± 0,0                                            | 3,0 ± 0,0                                            | 3,0 ± 0,0                                            | 2,0 ± 0,5                                            | 1,0 ± 1,0                                            | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                        | 0,0 ± 0,0                                            | 0,0 ± 0,0                                              |
| 0 ± 0,5 2                            | 2,0 ± 0,0                                | 2,5 ± 0,5                                                                                                                                                                           | $3,0 \pm 0,0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $3.0 \pm 0.0$                                        | $2,5 \pm 0,0$                                        | $2,0 \pm 0,5$                                        | $2,0 \pm 0,5$                                        | $2,0 \pm 0,5$                                        | 2,0 ± 0,5                                            | 1,0 ± 1,0                                            | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                          |
| 0 ± 0,5 2                            | 2,0 ± 0,0                                | $2,0 \pm 0,5$                                                                                                                                                                       | $1,5 \pm 0,5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2,0 \pm 0,0$                                        | $2.0 \pm 0.0$                                        | $1,5 \pm 0,5$                                        | $2.0 \pm 0.5$                                        | $2.0 \pm 0.5$                                        | 1,5 ± 0,0                                            | $0.5 \pm 0.5$                                        | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                        | $0.0 \pm 0.0$                                          |
| ,0<br>,0                             | 0 ± 0,0<br>0 ± 0,0<br>5 ± 0,5<br>0 ± 0,5 | $0 \pm 0.0$ $0.0 \pm 0.0$ | $0 \pm 0.0$ $0.0 \pm 0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

| Scores bleeding (mean ± SD) |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |
|-----------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Experimental days           | D7            | D8            | D9            | D10           | D11           | D12           | D13           | D14           | D15           | D16           | D17           | D18           | D19           | D20           | D21           |
| NO DSS + vehicle            | $0.0 \pm 0.0$ | $0.0 \pm 0.0$ | 0,0 ± 0,0     | 0,0 ± 0,0     | $0.0 \pm 0.0$ | 0,0 ± 0,0     | 0,0 ± 0,0     |
| NO DSS + InvColi-shCOX2     | $0.0 \pm 0.0$ | $0.0 \pm 0.0$ | 0,0 ± 0,0     | $0.0 \pm 0.0$ | $0,0 \pm 0,0$ | $0.0 \pm 0.0$ | $0.0 \pm 0.0$ | $0,0 \pm 0,0$ | $0.0 \pm 0.0$ | 0,0 ± 0,0     | $0.0 \pm 0.0$ |
| DSS 1.5% + vehicle          | 2,0 ± 1,0     | 2,0 ± 1,0     | 2,0 ± 1,0     | 2,0 ± 0,5     | $3.0 \pm 0.0$ | $3,0 \pm 0,0$ | 2,0 ± 0,5     | $2,0 \pm 0,5$ | 2,0 ± 0,0     | $2,0 \pm 0,0$ | 1,0 ± 0,5     | $0.0 \pm 0.0$ | $0.0 \pm 0.0$ | 0,0 ± 0,0     | 0,0 ± 0,0     |
| DSS 1.5% + InvColi-NC       | $2,0 \pm 0,5$ | $2,0 \pm 0,0$ | $2,0 \pm 0,5$ | 2,0 ± 1,0     | $2,5 \pm 0,5$ | $2,5 \pm 0,5$ | $2,0 \pm 0,5$ | $2,0 \pm 0,5$ | $2,0 \pm 0,5$ | 1,5 ± 0,5     | $0.5 \pm 0.5$ | $0.0 \pm 0.0$ | $0.0 \pm 0.0$ | $0.0 \pm 0.0$ | $0.0 \pm 0.0$ |
| DSS 1.5% + InvColi-shCOX2   | $2,0 \pm 0,5$ | $2,0 \pm 0,5$ | $2,0 \pm 0,0$ | 1,5 ± 0,5     | $1,5 \pm 0,5$ | $1,5 \pm 0,5$ | 1,0 ± 1,0     | $1,5 \pm 0,0$ | $1,0 \pm 0,5$ | $1,0 \pm 0,0$ | $0.0 \pm 0.0$ |

## **Supplementary Figure S4**

(a) Numeric value and (b) graphical representation of  $\Delta$ weight percentages calculated for all experimental mice groups during the experiment (from time D7 to D21). For each group, values were considered as mean of  $\Delta$ weight (%) calculated on each subject from the same group. Graph represents mean  $\pm$  SD. SC = start colitis; MC = maximum colitis; WR = weight recovery; EE = end of the experiment. (c) Score values (mean  $\pm$  SD) used for DAI calculation (weight loss + stool consistency + bleeding).