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1 Introduction

In this supplementary material, we first present the tables of parameters
used in the model for neuronal island and hippocampal slices. We then show
that the level of the noise is not enough to generate spontaneous bursting
at a time scale of minutes. Finally, we show that blocking the metabolism
of astrocyte does not affect bursting reverberation. Finally, we show the
analytical computation of the reverberation time as a function of the synaptic
connectivity J .
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Tables of Results

Table A: Burst durations in island cultures and acute slices.

Stimulation Burst Ratio with the Simulated burst Ratio with the
duration first burst duration first burst

duration duration

island cultures (n=20)
5 s 0.99 ± 0.77 s[1] 0.49 0.92 s 0.45
35 s 2.26 ± 0.75 s[1] 1 2.045 s 1

acute slices (n=22)
0 s 283.6 ± 26.9 ms 1 280 ms 1
5 s 147.8 ± 15.9 ms 0.55 125 ms 0.45
35 s 232.2 ± 24.3 ms 0.81 240 ms 0.85
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Table B: Comparison of burst durations for different extracellular
calcium concentrations

Interpulse interval (s)/ Calcium Experimental Simulated
concentration(experiment)/ burst duration burst duration
facilitation steady state (model)

island cultures (n=5)
5 / 2 Ca2+/X 0.98 ± 0.38 s [1] 0.92 s
35/ 2 Ca2+/X 2.03 ± 0.98 s [1] 2.045 s
5 / 1 Ca2+/X* 0.93 ± 0.32 s [1] 0.81 s
35/ 1 Ca2+/X* 1.10 ± 0.62 s [1] 1.115 s

acute slices(n=5)
0 / 2.5 Ca2+/X 260.7 ± 44.2 ms 280 ms
5 / 2.5 Ca2+/X 123.1 ± 20.7 ms 125 ms
35/ 2.5 Ca2+/X 221.0 ± 41.5 ms 240 ms
0 / 1.3 Ca2+/X* 162.6 ± 47.6 ms 165 ms
5 / 1.3 Ca2+/X* 129.5 ± 36.4 ms 115 ms
35/ 1.3 Ca2+/X* 162.1 ± 53.3 ms 145 ms
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Figure A. Reverberation bursting ratio when the interval between
pulses varies. Using the parameters for culture (see table 1, the ratio
converges to one after ten seconds.
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Figure B. Effect of noise on the reverberation burst. (A) Burst dura-
tion after the first and the second pulse as a function of the noise amplitude
σ, for each value of the noise amplitude σ (500 runs). (B) Numerical simu-
lations of the evoked bursts, generated at 5 and 35 seconds intervals with a
source noise, extracted from the experimental data (σ = 2 Hz). Spontaneous
activity is not enough to generate a response comparable to the evoked one.
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Figure C. Blocking astroglial metabolism does not affect the burst-
ing reverberation. (A) Evoked burst triggered by a single synaptic stimu-
lation with a 5 s interval in the presence of fluoroacetate (FAC, 5 mM). (B) Si-
multaneous depolarization of astrocyte during the bursting pulse. (C) Burst-
ing duration at 0 and 5 s before and after FAC application. (∗ ∗ P < 0.01,
compared with 0 s, Student’s paired t-test). (D) Ratio of bursting duration
at 5 s before and after FAC application (P > 0.05, compared with control,
Student’s paired t-test, n=4).

Derivation of formula [5]: Analytical estima-

tion of the reverberation time TR

We present in this section our analytical computation of the reverberation
time as a function of the synaptic connectivity J (formula 5 of the main
manuscript). This reverberation time TR is defined using the firing rate
variable h, as the duration of the bursting activity above a certain threshold
hth, induced here by a single spike. During the reverberation period, the firing
rate remains approximatively constant in the initial phase of the response,
which allows us to partially decouple the synaptic equations (system 1 in the
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main text), that we recall now

τ ḣ = −h+ Jxyh+Hδ(t− tstim) (1)

ẋ =
X − x

tf
+K(1− x)h

ẏ =
1− y

tr
− Lxyh.

Our goal is to estimate TR as a function of the threshold hth.

Approximation procedure

During the early bursting time, we approximate equation 2 and 3 of system
(1), by considering h(t) ≈ H, its initial value and obtain the new approxi-
mated system

τ ḣ = −h+ Jxyh+ τHδ(t− tstim) (2)

ẋ =
X − x

tf
+K(1− x)H

ẏ =
1− y

tr
− LxyH.

Indeed, the firing rate h depends on the facilitation and depression variables
x and y respectively. Although this approximation can affect drastically
their dynamics, later on in the decay phase, it will not change the return
to equilibrium of the firing rate h. In Fig. D , we compare system (1)
(continuous line) and (2) (dashed line) for 3 different values of synaptic weight
J (not too large): while the depression and facilitation variable are much
affected, the firing rate dynamics is pretty robust.

Analysis of the approximated system

Because in system (2) the dynamics of x and y do not depend anymore on
h, we can now integrate them and obtain

h(t) = H exp

(
− t

τ
+ J

∫ t

0

x(s)y(s)ds

)
x(t) = A+B exp(−αt)

y(t) = exp (−f(t))

(
1 +

1

td

∫ t

0

exp(f(s))ds

)
, (3)
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Figure D. Comparison of system of equations (1) (continuous line)
and the approximated system (2) (dashed line). We use three different
values of the connectivity parameter J . The firing rate h, the facilitation x
and the depression y variables are plotted as functions of time. For a low
enough connectivity parameter J , the firing rate is well approximated.

where

A = X

(
1 +

KH

α

)
, B = −X

(
KH

α

)
, α =

1

tf
+KH (4)

and

f(t) =
t

td
+ LH

∫ t

0

x(s)ds, with f(0) = 0 and f ′(0) =
1

td
+ LHX. (5)

Because the function f increases with the time, we further approximate∫ t

0

exp(f(s))ds ≈
∫ t

0

exp(f(t) + f ′(t)(s− t))ds (6)

≈ exp(f(t))(1− exp(f ′(t)))

f ′(t)
(7)

leading with equation 3 to

y(t) = exp(−f(t)) +
1− exp

(
− t

td
− tLHx(t)

)
1 + tdLHx(t)

. (8)
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Figure E. Comparison between the depression variable y estimated
by equation (8) (blue) and the exact one obtained by numerical
simulation of system (2) (black).

This approximation is quite robust as demonstrate by figure E. Finally, using
expressions 3 and 8, we obtain for the firing rate h

h(t) = H exp

(
− t

τ
+ J

∫ t

0

x(s)y(s)ds

)
. (9)

Approximation of the firing rate h

To obtain an explicit expression for the firing rate variable h, we now decom-
pose the last term into two parts

∫ t

0

x(s)y(s)ds =

I︷ ︸︸ ︷∫ t

0

x(s) exp(−f(s))ds+

II︷ ︸︸ ︷∫ t

0

x(s)
1− exp

(
− s

td
− sLHx(s)

)
1 + tdLHx(s)

ds .(10)

The first term I is

I = A

∫ t

0

exp(−f(s))ds+B

∫ t

0

exp(−αt− f(s))ds. (11)

Because the term I is the sum of two integrals of decreasing functions, we
use Laplace’s method at the point 0, which is a regular. Thus using relations
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4

A

∫ t

0

exp(−f(s))ds ≈ A

∫ t

0

exp(−f(0)− sf ′(0))ds ≈ A
exp(−f(0))(exp(−tf ′(0))− 1)

−f ′(0)

≈ A
1

td
+ LHX

[
1− exp

(
t

(
1

td
+ LHX

))]
.

Furthermore,

B

∫ t

0

exp(−αt− f(s))ds ≈ B

∫ t

0

exp(−f(0)− s(α+ f ′(0)))ds (12)

≈ B

α+
1

td
+ LHX

[
1− exp

(
t

(
α+

1

td
+ LHX

))]
.

Finally,

I ≈ AFβ(t) +BFα+β(t), (13)

where β = 1
td
+ LHX, F0(t) = t and

Fu(t) =
1− e−ut

u
, t ∈ R, u ∈ R∗. (14)

We shall now estimate II using that tdLH = 0.54 < 1 and x(t) < 1. Ex-
panding in Taylor series

(1 + tdLHx(t))−1 =
∞∑
k=0

(−tdLHx(t))k, (15)

yields

II =

∫ t

0

x(s)(1− exp(−sf ′(s)))
∞∑
k=0

(−tdLHx(s))kds

=
∞∑
k=0

(−tdLH)k
∫ t

0

x(s)k+1(1− exp(−sf ′(s)))ds

=
∞∑
k=0

(−tdLH)k
∫ t

0

k+1∑
i=0

(
k + 1

i

)
AiBk+1−ie−αs(k+1−i)(1− e−sf ′(s))ds,
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where we have used equation 3. Finally, we obtain that

II ≈
∞∑
k=0

(−tdLH)k
k+1∑
i=0

(
k + 1

i

)
AiBk+1−i(Fα(k+1−i)(t)− Fβ+α(k+1−i)(t))(16)

≈
∞∑
k=0

(−tdLH)kAk+1

k+1∑
i=0

(
B

A

)i (
k + 1

i

)
(Fαi(t)− Fβ+αi(t)), (17)

where

|B
A
| =

KH
α(

1 + KH
α

) < 1. (18)

Summarizing the previous estimates, a power series expansion in the variable
−tdLH for∫ t

0

x(s)y(s)ds ≈ AFβ(t) +BFα+β(t) (19)

+
∞∑
k=0

(−tdLH)kAk+1

k+1∑
i=0

(
B

A

)i (
k + 1

i

)
(Fαi(t)− Fβ+αi(t))

≈ At+BFα(t) +
∞∑
k=1

(−tdLH)kAk+1

k+1∑
i=0

(
B

A

)i (
k + 1

i

)
(Fαi(t)− Fβ+αi(t))

≈ At+BFα(t) + A

∞∑
k=1

Ck

k+1∑
i=0

(
B

A

)i(
k + 1

i

)
(Fαi(t)− Fβ+αi(t)), (20)

where C = −tdLHA. Reorganizing the series by changing the order of
summation, we get∫ t

0

x(s)y(s)ds ≈ At+BFα(t) + A
∞∑
i=1

∞∑
k=i

Ck

(
B

A

)i(
k + 1

i

)
(Fαi(t)− Fβ+αi(t))

+ B

∞∑
i=1

(BC)i(Fα(i+1)(t)− Fβ+α(i+1)(t)) + A(t− Fβ(t))
∞∑
i=1

Ci.(21)
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Using the value of the parameters, the variable B and B
A
are small and Thus,

we shall neglect terms of order greater than 2 in order of B and B
A
to obtain∫ t

0

x(s)y(s)ds ≈ At+BFα(t) +B
∞∑
k=1

(k + 1)Ck(Fα(t)− Fβ+α(t)) +
AC

1− C
(t− Fβ(t))

≈ At+BFα(t) +B

(
1

(1− C)2
− 1

)
(Fα(t)− Fβ+α(t)) +

AC

1− C
(t− Fβ(t)).

Finally using equation 9, we obtain an approximated expression for the rate
h

h(t) ≈ H exp

{
−t

τ
+ J

[
At

1− C
+

BFα(t)

(1− C)2
− AC

1− C
Fβ(t)−B

(
1

(1− C)2
− 1

)
Fα+β(t)

]}
.(22)

The reverberation time satisfies a transcendental equa-
tion

We derive here a transcendental for the reverberation time TR. For that
purpose, we follow the experimental protocol where an induced spike (at
time zero) sets the firing rate to a value H. The reverberation time TR is
then defined as the first time where the firing rate reaches the threshold hth

that is

TR = inf{t > 0, h(t) = hth}. (23)

We can now use expression 22 to estimate the reverberation TR as a function
of the synaptic and network parameters:

hth = h(TR) ≈ H exp

{
−TR

τ
+ J

[
ATR

1− C
+

BFα(TR)

(1− C)2
− AC

1− C
Fβ(TR)

−B

(
1

(1− C)2
− 1

)
Fα+β(TR)

]}
. (24)

At this stage, we conclude that the reverberation time TR is solution of a
transcendental equation

ln

(
H

hth

)
=

(
1

τ
− JA

1− C

)
TR − J

[
BFα(TR)

(1− C)2
− AC

1− C
Fβ(TR)

−B

(
1

(1− C)2
− 1

)
Fα+β(TR)

]
. (25)
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Analytical approximation of the reverberation time

To obtain an explicit expression for the reverberation time TR as function
of J , we shall expand the exponential terms in the transcendental equation,
which can be written as

J = Φ(TR) =
TR − T0

τG(TR)
, (26)

where

T0 = τ ln

(
H

hth

)
(27)

G(t) =
A

1− C
t+

BFα(t)

(1− C)2
− AC

1− C
Fβ(t)−B

(
1

(1− C)2
− 1

)
Fα+β(t).

When the reverberation time TR is short enough, we can Taylor expand the
function G to second order polynomial, denoted by P (t), where

P (t) =
A

1− C
t+

B(t− α
2
t2)

(1− C)2
− AC

1− C
(t− βt2

2
)− BC(2− C)

(1− C)2
(t− (α+ β)t2

2
)

= (A+B)t+
−αB + β (AC(1− C) +B (1− (1− C)2))

2(1− C)2
t2

= (A+B)t+
1

2

(
−αB +

β (−(A+B)C2 + (A+ 2B)C)

(1− C)2

)
t2. (28)

Using A+B = X and αB = −XKH, we obtain that

P (t) = Xt+
1

2

(
XKH +

βC (−XC +X +B)

(1− C)2

)
t2. (29)

With a = tfKH and b = tdLHX, we haveB = − Xa

1 + a
and C = −b

(
1 +

a

1 + a

)
.

Thus, we obtain that

P (t) = Xt+
X

2

 a

tf
−

b(b+ 1)
(
1 + a

1+a

) (
b
(
1 + a

(1+a)

)
+ 1

1+a

)
td(1 + b

(
1 + a

1+a

)
)2

 t2.(30)
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a and b are small parameters. A final expansion of P in third order in the
parameters a and b yields

P (t) = Xt+
X

2

(
a

tf
− b

td

)
t2 (31)

= Xt+
XH

2
(K − LX) t2. (32)

Using this equation to solve (26), we are left with solving

JτP (TR)− TR + T0 = 0

⇔ JτXH (K − LX)

2
T 2
R + (XJτ − 1)TR + T0 = 0. (33)

Retaining the solution that satisfies TR = T0 = τ ln
(

H
hthresh

)
for J = 0, we

finally get

TR(J) =

1− JXτ −
√

(JτX − 1)2 − 2JτXH(K − LX)τ ln
(

H
hth

)
JτXH(K − LX)

. (34)

In figure E, we compare this expression with the exact solution: we obtain a
good agreement for J < 1.9. When J > 1.9, the reverberation time is larger
than 1s. Thus, the approximation made in equation (28) is not valid any-
more. However, it is possible to approximate TR linearly for J ∈ [1.9; 1.99].
Using the implicit function theorem. We can locally invert equation (26) to
obtain

TR(J) ≈ 1 +
τG2(1)

G(1)− (1− T0)G′(1)
(J − Φ(1)) (35)

With the parameters (table 1), we obtain that

TR(J) ≈ 25.38J − 48.36. (36)

We have obtained here precise estimates for the reverberation time, in the
range J ∈ [0; 1.99]. This range includes the value J = 1.98, used in the
model. Two regimes have to be considered defined by the synaptic param-
eter J . When the network is not sufficiently connected, the reverberation
TR is slowly increasing as a function of J (equation (34)). For a network
sufficiently connected (J > 1.9) TR becomes linear. In figure F,we plotted
these estimates, which show good agreement with numerical simulations. Fi-
nally, for larger values of J , an analytical expression of TR as a function of
J remains to be found.
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Figure F. Comparison between numerical simulations and esti-
mates of the reverberation time TR. The reverberation time is plotted
as a function of J for the exact model (solid line), the approximated model
(dash black line), and the estimates given by equations (34) (dash red line)
and (36) (blue dash line).
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