Torres et al. Inosine modifications in human tRNAs are incorporated at the precursor-tRNA level

Supplementary Figures and Table.

Oligo	Sequence (5'-3')	
pre-tRNA Val AAC oligo 1	AGCTTAATACGACTCACTATAGGGTTGTTTCCGTAGTGT	
pre-tRNA Val AAC oligo 2	AGTGGTTATCACGTTCGCCTAACACGCGAAAGGTCCCTG	
pre-tRNA Val AAC oligo 3	GATCAAAACCAGGCGGAAACAAGTGGTTACCCTTCTTACATGTG	
pre-tRNA Val AAC oligo 4	ATAACCACTACACTACGGAAACAACCCTATAGTGAGTCGTATTA	
pre-tRNA Val AAC oligo 5	TTTTGATCCAGGGACCTTTCGCGTGTTAGGCGAACGTG	
pre-tRNA Val AAC oligo 6	GATCCACATGTAAGAAGGGTAACCACTTGTTTCCGCCTGG	
Forward primer HsADAT2 In-Fusion pPEU17 (ADAT2-NtermCherry)	AAGTTCTGTTTCAGGGCCCGGAGGCGAAGGCGGCACCCA	
Reverse primer HsADAT2 In-FusionpPEU17 (ADAT2-NtermCherry)	ATGGTCTAGAAAGCTTTAAGATTTCTGACATTCCTTTTTCCGAAC	
Forward primer HsADAT2 In-Fusion pPEU19 (ADAT2-CtermCherry)	AGGAGATATACCATGGAGGCGAAGGCGGCACCCAA	
Reverse primer HsADAT2 In-Fusion pPEU19 (ADAT2-CtermCherry)	CTTCCAGACCGCTTGAAGATTTCTGACATTCCTTTTTCCGAAC	
Forward primer HsADAT3 In-Fusion pPEU17 (ADAT3-NtermCherry)	AAGTTCTGTTTCAGGGCCCGATCCTCTGCTCCCGTCTCTGTCT	
Reverse primer HsADAT3 In-Fusion pPEU17 (ADAT3-NtermCherry)	ATGGTCTAGAAAGCTTTACGTGTCGGGGTCCAGCCAGCG	
Forward primer HsADAT3 In-Fusion pPEU19 (ADAT3-CtermCherry)	AGGAGATATACCATGATCCTCTGCTCCCGTCTCTGTCT	
Reverse primer HsADAT3 In-Fusion pPEU19 (ADAT3-CtermCherry)	CTTCCAGACCGCTTGACGTGTCGGGGTCCAGCCAGCG	
Forward primer HsADAT2 pEGFP-N1 (ADAT2-CtermGFP)	TTATAAGCTTATGGAGGCGAAGGCGGCA	
Reverse primer HsADAT2 pEGFP-N1 (ADAT2-CtermGFP)	AACTGGTACCCAAGATTTCTGACATTCCTTTTTCCG	
Forward primer HsADAT2 pEGFP-C1 (ADAT2-NtermGFP)	TTATAAGCTTTGGAGGCGAAGGCGGCAC	
Reverse primer HsADAT2 pEGFP-C1 (ADAT2-NtermGFP)	TATTGGTACCTCAAGATTTCTGACATTCCTTTTTCC	
Forward primer HsADAT3 pEGFP-N1 (ADAT3-CtermGFP)	ATATAAGCTTATGATCCTCTGCTCCCGTCT	
Reverse primer HsADAT3 pEGFP-N1 (ADAT3-CtermGFP)	TATAGGTACCGTGTCGGGGTCCAGCC	
Forward primer HsADAT3 pEGFP-C1 (ADAT3-NtermGFP)	ATATAAGCTTTGATCCTCTGCTCCCGTCTC	
Reverse primer HsADAT3 pEGFP-C1 (ADAT3-NtermGFP)	TATAGGTACCTACGTGTCGGGGTCCAG	
Forward primer RT-qPCR HsADAT2	AAGGCTGAGATTGGAAGCTG	
Reverse primer RT-qPCR HsADAT2	AGCAATTCACCATGAGCTGT	
tRNA Ala AGC oligo 1	AGCTTAATACGACTCACTATAGGGGGTGTGGCT	
tRNA Ala AGC oligo 2	CAGTGGTAGAGCGCGTGCTTAGCATGCACGAG	
tRNA Ala AGC oligo 3	GCCCCGGGTTCAATCCCCGGCACCTCCACCAGGG	
tRNA Ala AGC oligo 4	CGCTCTACCACTGAGCCACACCCCCTATAGTGAGTCGTATTA	
tRNA Ala AGC oligo 5	TTGAACCCGGGGCCTCGTGCATGCTAAGCACG	
tRNA Ala AGC oligo 6	GATCCCCTGGTGGAGGTGCCGGGGA	

Supplementary Table 1. Oligonucleotides (DNA oligos) used in this study.

Supplementary Figure 1. Proportion (%) of tRNA reads corresponding to the Precursor tRNA group (left panel) or the Processed tRNA group (right panel) for every tRNA type detected by RNAseq in our study. Replicates correspond to 4 independent RNAseq experiments.

Supplementary Figure 2. Proportion (%) of bases found at position 34 for tRNA Ile AAT and tRNA Thr AGT within the "Precursor" tRNA group. In both cases inosine 34 (read as a G34) could be detected in the "Precursor" tRNA group. The "Processed" tRNA group was not analyzed for these tRNAs because of low read counts. We obtained less than 30 reads for "Processed" tRNA Ile AGT and less than 10 reads for "Processed" tRNA Thr AGT.

Supplementary Figure 3. The SeqLogo package version 1.24.0 was used to generate sequence logos showing nucleotide proportions around anticodon+1 position for tRNAs Ile(AAT), Leu(AAG) and Val(AAC). Shown are the results for base calls considering reads from the "Precursor tRNA" and "Processed precursor tRNA" groups together, for each tRNA type. While A-to-I deamination is observed at position A34 (detected as G34), no deamination is detected at adenosines in position 35 (A35) in these tRNAs.

Supplementary Figure 4 (see next page). A-to-G mismatch proportion observed by RNAseq at residues throughout the whole sequence of the tRNA for all human ANN tRNAs. Background/noise levels were defined as the signal below 1% of the A-to-G mismatch error rate and is represented in the graphs as a grey dashed line. Residues showing an A-to-G mismatch proportion higher than 1% are indicated. Pos34: I34; Pos37: I37 (will be further modified to m¹I37); Pos58: likely corresponds to m¹A (m¹A detected as a "G" when sequenced has been reported previously (30, 41, 42)). Note that each graph is depicted using different scales at the y-axes showing the strong sequencing biases towards detection of the A-to-G mismatch proportion in different tRNA types.

Supplementary Figure 5. Proportion (%) of bases found at position 37 for tRNA Ala AGC. Only A37 (unmodified A37) and G37 (I37) could be detected in the Precursor tRNA group. In the Processed tRNA group higher levels of G37 (I37) and T37 (m¹I37) could be detected.

Supplementary Figure 6. Chromatogram obtained after sequencing of the anticodon loop of *in vitro* transcribed tRNA^{Ala}_(AGC) incubated ((+) hetADAT) or not ((-) hetADAT) with purified human hetADAT. The experiment was carried out exactly as described for pre-tRNA^{Val}_(AAC) in **Figure 2**. As expected, A37 was not deaminated by hetADAT.

Supplementary Figure 7. Live imaging confocal microscopy of HEK293T cells following co-expression of GFP- or mCherry-tagged HsADAT2 and HsADAT3 proteins. Scale bar corresponds to 5 μ m. Shown are the results for all the combinations of C-term tagged or N-term tagged ADAT proteins not shown in **Figure 3**.

	GFP	mCherry	Merge
P AT2			
P erry			
3 AT2		0 2 2 2 3 0 0	
3 erry			

ADAT3-GFP mCherry-ADAT2

ADAT3-GFP ADAT2-mCherry

GFP-ADAT3 mCherry-ADAT2

GFP-ADAT3 ADAT2-mCherry **Supplementary Figure 8.** Non-normalized proportion (%) of I34 observed in HEK293T shCV cells and HEK293T shADAT2 cells for all human ANN tRNAs. Figure corresponds to the non-normalized values of **Figure 4B**.

