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1 Primary analysis of sequencing data

1.1 Description and nomenclature of the samples

All samples are from murine F9 cell line cultures, at various time points after induction of
differentiation by RA. Sample types and time are summarized in the following table:
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Sample ID Sample type Time Nb replicates
wce-wt WCE 0h 1

chIP-rar-wt ChIP RAR 0h 1
chIP-rxr-wt ChIP RXR 0h 1

mRNA-wt mRNA 0h 4
chIP-rar-2h ChIP RAR 2h 1
chIP-rxr-2h ChIP RXR 2h 1
mRNA-ra-6h mRNA 6h 2
mRNA-12h mRNA 12h 2

chIP-rar-24h ChIP RAR 24h 1
chIP-rxr-24h ChIP RXR 24h 1
mRNA-ra-24h mRNA 24h 2

mRNA-dmso-24h mRNA 24h 1
chIP-rar-48h ChIP RAR 48h 1
chIP-rxr-48h ChIP RXR 48h 1
mRNA-ra-48h mRNA 48h 2

mRNA-dmso-48h mRNA 48h 1

Starting from untreated cells (*-wt samples), the time course was performed in parallel on
RA treated cells (chIP-*-*h and mRNA-ra-*h samples) and on untreated cells (mRNA-dmso-*
samples). The time course on untreated cells serves as a control of the stability of the initial
cell population, and were used as replicates of the mRNA-wt sample.

Time points for mRNA-seq and ChIP-seq samples are not meant to match since cis-
regulation is known to have a delayed effect on mRNA levels, and the delay may vary from
one transcript to another [13].

1.2 ChIP-seq samples

1.2.1 Alignment of sequenced reads

Reads from ChIP-seq samples were aligned using Bowtie [11] version 0.12.9 in MAQ-like
policy. We used options -n 3, -e 70 and -m 1 to discard reads that mapped at more than
one location in the genome. We used the UCSC Genome Browser1 to produce visualizations
of the aligned reads along the chromosomes and gene annotations. To this end, the SAM files
produced by Bowtie were converted to BAM format with samtools2, which can be directly
displayed in the Genome Browser.

1.2.2 Determination of candidate binding regions

Each ChIP-seq sample yields a collection of peaks and it is not straightforward to follow
the time course of a single peak: one would have to match peaks between samples (their
position may vary, some may appear/disappear, etc ...). Our approach is to use peaks from

1http://genome.ucsc.edu/cgi-bin/hgGateway
2http://samtools.sourceforge.net/
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Sample ID #Total reads #Total alignments #Aligned reads (%)
wce-wt 21768081 11995208 11995208 (0.55)

chIP-rar-wt 33110281 10330904 10330904 (0.31)
chIP-rar-2h 22259819 10579331 10579331 (0.48)
chIP-rar-24h 33314035 6814684 6814684 (0.20)
chIP-rar-48h 31760038 10391493 10391493 (0.33)
chIP-rxr-wt 32576694 8928011 8928011 (0.27)
chIP-rxr-2h 31513920 15063235 15063235 (0.48)
chIP-rxr-24h 33770496 10748544 10748544 (0.32)
chIP-rxr-48h 33528842 11268656 11268656 (0.34)

Table 1: Alignment results for ChIP-seq samples.

all samples together to determine a fixed set of genomic regions where we can detect binding
events. These binding regions are considered as a genomic feature (like genes) and do not
depend on one particular condition anymore, so one can study their coverage by sequencing
data across several conditions.

More formally, what we will thereafter call candidate binding regions are the genomic
locations defined as follows:

1. call peaks for each sample, with a really permissive threshold

2. consider the set of positions on the genome which are the summit of a peak in at least
one condition

3. define a link between any two summits that are closer than 100bp

4. compute connected components of this graph

5. define, for each connected component, a binding region, as a location of 500bp wide
centered at the mean of the summits in the connected component

For the first step, we used MACS [18] version 1.4.2 with default options, except the p-
value threshold (--pvalue) which was set to 10−3. For all chIP samples, we took wce-wt as
a control. MACS is pretty good at indicating the summit of a peak, it is shown in [18] that
it is strongly correlated with the occurrence of the expected sequence motif.

With the above procedure, we obtained a total of 192002 candidate binding regions.
Given that the peak calling step was performed with a very permissive threshold, it was
necessary to select a subset of bona fide binding regions. For this purpose we established
two criteria that were used as filters on this initial set. They are described in the following
paragraph.

1.3 Filtering candidate binding regions

Significant read enrichment with respect to control We expect that real binding re-
gions will display significantly more reads in at least one ChIP sample than in the control
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(WCE). In order to assess this, MACS uses a simple Poisson test taking as a null hypoth-
esis the intensity in control and flanking regions of the peak. However this approach is
problematic when the size of the library differs between treatment and control (or between
treatments); various ad hoc normalization strategies have been proposed (notably in MACS)
but we preferred a more principled approach and resorted to the Poisson Margin Test [10],
that was specifically designed to address this issue. Alternatively, we could also have used
tests based on the negative binomial distribution, like in DESeq [3]. However the estimation
of the over-dispersion parameter is arguably not reliable enough in the absence of repli-
cates (though it is technically feasible with DESeq), and we decided to use a simpler model
(Poisson-based count distribution), granted that the Poisson Margin Test can be considered
pretty conservative.

Each candidate regions was assigned the number of reads it contained, counting only
one read if several fell at the same location. For each we tested for a significant difference
between RAR binding and control signals at at least one time point. We decided to keep a
region if for at least one time point, the test led to a (Benjamini-Hochberg adjusted) p-value
smaller than 0.001. We ended with 32850 significantly enriched regions.

In the two remaining filters, each region is assigned its lowest p-value throughout the time
serie (that is a score representing the biggest difference between chIP and control during the
time course).

Reproducibility between RAR and RXR ChIP samples RAR is known to interact
with DNA only in a complex with RXR, while RXR has a lot more possible partners in the
NHR family. As a result, it is expected that each RAR binding region is also an RXR binding
region (but the converse is not necessarily true). In order to verify that, we represented on
Suppl. Fig. 1 the proportion among RAR-positive candidate regions of RXR-positive regions
as a function of the unadjusted p-value threshold. We decided to finally keep regions with
at most 10−7 unadjusted p-value, provided:

• they are not located on a mitochondrial chromosome

• they do not belong to the blacklist3 published in the context of the ENCODE project [6].

These last operations provided the 13791 regions used in our paper.

1.4 mRNA-seq samples

1.4.1 Alignment of sequenced reads

The reads from mRNA-seq samples were aligned using Tophat [15] version 2.0.7 associated
with Bowtie [11] version 0.12.9. Tophat was run with default options.The aligned reads
were assigned to genes by htseq-count [4], run with default options on the version 63 of the
Ensembl mouse annotation 4.

3This list is available for download at https://sites.google.com/site/anshulkundaje/projects/

blacklists
4Available at ftp://ftp.ensembl.org/pub/release-63/gtf/mus_musculus/
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1.4.2 Detection of differentially expressed genes

We sought to detect genes that are differentially expressed in at least one condition (time
point) with respect to the untreated cells. As explained in the paragraph 1.1, the samples
mRNA-wt, mRNA-dmso-24h and mRNA-dmso-48h were considered as replicates for the untreated
condition.

The tests for differential expression were performed using DESeq [3] version 1.12.0. A gene
was declared modulated if it displayed a significant difference between any two time-points
(the cutoff was fixed at 5.10−2 of (Bonferroni-Hochberg) adjusted p-value) and expressed if
it had a non-zero estimated level (baseMean in DESeq) in some condition.

2 NH response elements in RAR regions

2.1 Evaluating NHRE motif enrichment in RAR regions

We expected a large proportion of our RAR regions to contain the known binding motif
of the RAR-RXR complex, at least significantly more than in random regions. In order to
quantify this expected enrichment, we scanned each binding region with the motif defined
by Balmer et al. [5] and reported its best alignment score. We did the same in a control
set consisting of random DNA sequences with the same length and GC distribution. Now
for a given score threshold, we could calculate the proportion of regions with at least one
match (called positive regions) in both sets (RAR regions and control). By varying the
score threshold from −∞ to +∞, we obtained a ROC curve, which summarizes the trade-off
between the sensitivity of the detection and the false positive rate. This was repeated for
all direct, everted and inverted repeats; we also considered a DR{0,1,2,5} (resp. DR{1,2,5})
compound motif that has an occurrence as soon as one among DR0, DR1, DR2, DR5 (resp.
DR1, DR2, DR5) has one. Fig. 1 shows the obtained results for the DR0, DR1, DR2, DR5
and DR{0,1,2,5} motifs.

The area under the ROC curve (AUC) can be used to quantify the enrichment of the
motif in our dataset, as it is equal to the probability that a RAR region has a better score
than a random region. In other words, it measures the ability of the alignment score to
distinguish between experimentally bound regions and random sequences. We reported the
AUC for all direct, everted and inverted repeats in Fig. 3C of the paper.

2.2 Determination of an alignment score threshold for site predic-
tion

We sought to establish a threshold for alignment scores, in order to predict true NHRE
with an acceptable trade-off between sensitivity and false positive rate. This threshold can
be calculated theoretically for random sequences generated by a Markovian process [14];
however we preferred to estimate these threshold empirically, in order to use a control set
consisting of sequences from an actual genome.
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Figure 1: ROC curves for DR0, DR1, DR2, DR5 and DR{0,1,2,5} motifs.
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We built a control set of random sequences having the same length and G+C compo-
sition distribution than in the panRAR binding regions. Each nucleotide was generated
independently. This control set was scanned for all NHR motifs, and reported the score
threshold yielding respectively 1, 5, 10, 20 and 30% positive (that is, bearing a motif occur-
rence) sequences in the control set. Said differently, we thus estimated the thresholds for
false-positive rates of 0.01, 0.05, 0.1, 0.2 and 0.3. We also reported the fraction of positive
sequences in the panRAR binding regions, that is the corresponding sensitivity (assuming,
as an approximation, that all binding regions have an actual RAR motif).

We finally performed all motif predictions by taking the score threshold corresponding
to 10% of matching sequences in the control set.

3 Temporal profiles and association with TF binding

The primary analysis of our ChIP-seq and RNA-seq datasets (see Section 1) yielded time
series measurements for both RAR/RXR binding at every RAR binding site and transcrip-
tion level for every gene. We then performed a clustering analysis of these data, as means
to detect significant associations between an element (gene or binding site) response and its
chromatinic environment.

3.1 ChIP-seq time series

ChIP-seq time series clustering RAR/RXR binding regions were filtered by keeping
the only regions that experience a significant change during the time course. More precisely,
we tested for each binding region if there were two time points between which the ChIP-
seq signal exhibited a significant difference, as detected by the Poisson Margin Test [10] at a
10−6 significance level. These so-called “dynamic binding regions” were then clustered using a
standard k-means algorithm; each region was represented as a vector with one coordinate per
time-point; each coordinate was computed as the number of reads falling into the region in the
associated time-point divided by the number of millions of aligned reads in the corresponding
sample (recall that all binding regions were set to the same length). We used the program
Cluster 35 with the following options:

• normalization on (each profile is scaled to (Euclidean) norm 1)

• k-means algorithm

• 100 runs

• use uncentered Pearson correlation as a distance.

The number of clusters was chosen empirically, by visual inspection.

5http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm#ctv
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Transcription factor occupancy datasets We used the occupancy maps provided in
publications on mouse ES [7, 12, 9, 8, 16, 17] and F9 cells [2]. All the datasets were collected
through the GEO database [1]. We chose to reuse the called peaks distributed with each
dataset.

Association with RAR/RXR binding clusters Each of our RAR binding regions was
annotated as having or not a detected peak for other TFs less than 1kb away. Formally,
the association score between some cluster membership and some other TF binding was
quantified with a log odds ratio as computed for the Fisher Exact test.

3.2 RNA-seq time series

We applied an analoguous methodology to detect association between expression profiles and
TF binding. First we distinguished three groups of genes in the genome:

• modulated, that is genes that exhibit a significant difference between two time points,
as tested with DEseq at an (adjusted) p-value level of 0.05,

• expressed, that is genes that have a non-zero expression level at some time point,

• non-expressed, that is genes which have not been detected at any time point.

Only modulated genes were included for the cluster analysis, which was performed by
Cluster 3.0. Each gene was represented as a vector containing the log fold change with
respect to the initial (t=0h) time point for the three other time points. The number of
classes in the clustering was also chosen by visual inspection of the clusters.

Abbreviations

• AUC : Area Under Curve

• NH : Nuclear Hormone

• NHRE : Nuclear Hormone Receptor Element

• RA : Retinoic Acid

• ROC : Receiver OPerator Curve
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