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EXPERIMENTAL PROCEDURES 

Cell culture: Human endometrial stromal cells (dESC) were grown in phenol red free 

DMEM, supplemented with 5% charcoal-stripped calf-serum, 1% antibiotic/antimycotic (ABAM), 
and 1x ITS+.  At 80% confluency, cells were decidualized with the addition of 0.5 mM 8-Br-

cAMP (Sigma) and 1mM medroxyprogesterone acetate (Sigma) to the cell culture media for 48-
72 hours. Deciduaization of the dESC was confirmed by monitoring the expression of prolactin 

(PRL), which is only expressed in decidualized dESC, by RT-qPCR.    

High-throughput transcriptome sequencing: Endometrial samples from mid-stage 

pregnant platypus, opossum, armadillo and dog, and day 14-18 post-implantation cow, horse, 
and pig were dissected to remove myometrial and placental tissue, and washed in ice-cold PBS 

to remove blood cells. Total RNA was extracted from cleaned endometrial tissue and dESC 
using the Qiagen RNA-Easy Midi RNA-extraction kit followed by on-column DNase treatment 

(Qiagen). Total RNA quality was assayed with a Bioanalyzer 2100 (Agilent) and found to be of 
excellent quality for all samples. Aliquots from the total RNA samples were sequenced using the 

Illumina Genome Analyzer II platform (75-bp reads), following the protocol suggested by 

Illumina for sequencing of cDNA samples.  Two to four biological replicates each were 
sequenced for all samples except platypus for which only a single sample was available. 

mRNA-Seq reads were quality controlled following standard methods and species specific reads 
mapped to the human (GRCh37), macaque (MMUL_1), mouse (NCBIM37), dog (BROADD2), 

cow (UMD3.1), horse (EquCab2), pig (Sscrofa9), armadillo (dasNov2), opossum (monDom5),  
platypus (OANA5), and chicken (WASHUC2) gene builds at Ensembl using Bowtie with default 

parameters. 

Gene expression in other cell types: Gene expression data for cell-types found in the 

pregnant human endometrium were obtained from previously published microarray datasets for 
human decidual natural killer cells (dNK; GSE5172), human decidual macrophage cells (dMP; 

GSE30595), and human decidual endothelial cells (dEC; GSE41946). We used the transcript 
presence/absence calls calculated by each study to classify genes as expressed or not in these 

cell types.  
Gene expression calling: We used a model-based method to classify gene as expressed 

based on the number of transcripts per million (TPM) in the total RNA-seq dataset (Li et al., 
2010; Wagner et al., 2012; 2013). Read counts were normalized by total estimated transcript 
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number, expressed in transcripts per million transcripts or TPM. This normalization is invariant 

with respect to Trimmed Mean of M-values normalization  since the correction factor affects both 
the numerator as well as the denominator of the TPM value (Li et al., 2010; Wagner et al., 2012; 

2013). The distribution of transcript abundances was fitted to a model consisting of a discretized 
exponential distribution, represented transcripts from repressed genes, and a negative binomial 

distribution, representing the distribution of abundance values of actively transcribed genes 
using R. The model suggests that genes with a TPM≤2 are likely from transcriptionally 

suppressed genes (Nagamatsu et al., 2009; Wagner et al., 2012; 2013). This threshold is 
consistent with one obtained by comparing the transcript abundance with the chromatin state of 

the respective gene (Hebenstreit et al., 2011; Taglauer et al., 2009) and we thus classified 
genes with TPM>2 as expressed and those with TPM≤2 as not expressed in the human 

endometrial stromal fibroblast data. Because the genomes of the other species we generated 

RNA-Seq data for are incomplete we used a hybrid approach to infer which genes in those 
species were expressed, we first identified all genes expressed in human endometrial stromal 

fibroblast with TPM>2 and then averaged the raw reads mapped per gene per million mapped 
reads (RMPM) for these genes. This average RMPM value (RMPM=1) was used as the 

expression cutoff for all non-human species. 

Parsimony reconstruction of gene expression gain/loss: To identify genes that evolved 

endometrial expression in mammals we combined genes expressed in the human dESC, dNK, 
dMP, and dEC cells, and used the expressed gene calls for each species (described above). 

We used Wagner parsimony to reconstruct gene expression gains and losses using the method 
implemented in the pars program from PhyML (v2.4.4). We used Mesquite (v2.75) to identify the 

number of genes that most parsimoniously gained or lost endometrial expression; expression 
was classified as most parsimoniously a gain if a gene was inferred as not expressed the 

ancestral node (state 0) but inferred likely expressed in a descendent node (state 1/[0/1]) and 
vice versa for the classification of a loss from endometrial expression. We also used Mesquite 

(v2.75) to identify specific genes that unambiguously gained or lost endometrial expression, 
expression was classified as an unambiguous gain if a gene was not inferred as expressed the 

ancestral node (state 0) but inferred as expressed in a descendent node (state 1) and vice 

versa for the classification of a loss from endometrial expression. This set of genes was used for 
all examples discussed in the main text and shown in Figures 3-5. 

Gene expression dynamics (Data show in Figure 2): We used mRNA-Seq data 
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generated for 27 tissues availale from the Human Protein Atlas dataset 

(http://www.proteinatlas.org/about/download) to calculate the tissue specificity index for 
recruited and ancestrally expressed genes. Following  Yanai et al. (2005) the tissue specificity 

index (τ) is defined as: 

 

where N is the number of tissues (N=27), and xi is the expression level of each gene normalized 

by the expression level of the tissue in which that gene is most highly expressed.  

To characterize the expression of ancestrally expressed and recruited genes throughout 

the human menstrual cycle we used Affymetrix Human Genome U133 Plus 2.0 Array data from 
human endometrium sampled during the proliferative, early secretory, mid secretory, and late 

secretory phases of the menstrual cycle generated by (GSE4888). We used Affymetrix Human 
Genome U133 Plus 2.0 Array data from human endometrium samples treated with trophoblast 

conditioned media generated by (GSE5809) to determine the transcriptional response of 
ancestrally expressed and recruited genes to paracrine signals from the trophoblast. We used 

Agilent-014850 Whole Human Genome Microarray 4x44K G4112F data from the endometrium 
of humans with unexplained infertility and normal fertile controls generated by (GSE16532) to 

determine if ancestrally expressed and recruited genes were differentially expressed in the 

endometria of infertile women. Gene expression levels from these datasets were analyzed using 
the GEO2R implantation of the limma R packages from the Bioconductor project.  

Gene function annotation: Genes recruited into endometrial expression in the 

Mammalian, Therian, and Eutherian stem-lineage were annotated based on their mouse 
knockout phenotypes and Gene Ontologies (GO) using data available at the Mouse Gene 

Informatics (MGI) database. Enrichments were calculated using VLAD: 
http://proto.informatics.jax.org/prototypes/vlad/. 

H3K4me3 and H3K27ac Chromatin Immunoprecipitation-sequencing (ChIP-Seq): 

Human endometrium stromal cells were grown and decidualized as described above, 48 hours 

after cAMP/Progesterone treatment cells were harvested, resuspended and chemically cross-

Midrange genome-wide transcription profiles

SYSTEMS AND METHODS
Expression data preprocessing
The expression intensity ofmRNAwas assayed across fivemicroarrays (Affy-
metrix GeneChips U95A–E), containing a total of 62 839 probesets, each in
duplicate. Poly(A)+RNA samples from the human tissues were purchased
from Clontech (Palo Alto, CA, details in Table S1 in the Supplementary
Material). This collection of major human tissues, includes bone marrow,
brain, heart, kidney, liver, lung, pancreas, prostate, skeletal muscle, spinal
cord, spleen and thymus. TheseRNAsamples have relatively coarsely defined
tissue delineations but are compatible in this respect to those used in other
studies of transcription patterns in a group of normal human tissues (Su et al.,
2002, 2004; Saito-Hisaminato et al., 2002). Each RNA sample was typically
composed of a pool of 10–25 individuals. While such commercial pooled
samples from anonymous donors are demographically ill-defined, they are
advantageous in enabling others to reproduce the experiments.
Replicate experiments were done independently, mostly from RNA of

identical lot numbers. Exceptions are kidney, pancreas and prostate. Aliquots
of each sample (12 µg cRNA in 200 µl hybridization mix) were hybridized
to a GeneChip Human Genome U95A–E array set (Affymetrix, Santa Clara,
CA). Preparation and hybridization of cRNA were done according to
the manufacturer’s instructions (Affymetrix, 2001, http://.com/support/
technical/manuals.affx).
The expression value for each gene was determined using theMicrroArray

Suite version 5.0 (MAS 5.0) software (Hubbell et al., 2002; Liu et al., 2003)
with default parameters, without using the MAS 5.0 scaling and normalizing
procedures. The quantilization procedure used here (see below) encapsulates
some features of a preprocessingmethod, RMA normalization (Irizarry et al.,
2003). AffymetrixMAS5.0 signal valueswere normalized by taking the log10
of all values (substituting −1 for zero intensities) and then subtracting the
mean for the particular array and adding the total experimentalmean (Shmueli
et al., 2003). Finally, intensities less than log10 30were set to log10 30 to elim-
inate the perturbation by the noise present in the low intensities. Variations
in this threshold resulted in no significant changes. The MAS 5.0 intensit-
ies, ranging on a decimal logarithmic scale from log10 30 to roughly 4, were
converted into a quantile scale. The expression data, averaged over the two
replicates, were divided into 11 bins, whereby 10 equal density quantiles
spanned the values above log10 30, and an eleventh ‘zero bin’ included the
remaining low-intensity values. Henceforth, the quantiled profiles were used
in the analysis.

Statistical analysis of differential expression
Single-classification ANOVA with equal sample sizes was employed on the
preprocessed 24 element expression vector composed of 12 tissues in two
replicates. For each tissue profile, the sum of the squares of the differences
between the replicates was compared with the sum of the squares of the
differences between the averages of the tissue expressions. To account for
the multiple comparison problem inherent in calculating the P -values for
all 62 839 probesets, we calculated the false discovery rate (Benjamini and
Hochberg, 1995). We chose a 1% error rate, which gave a P -value cutoff of
0.0036. This resulted in 22 936 profiles that were defined as ‘differentially
expressed’. The remaining profiles were further divided into not expressed
profiles, defined as having all 12 values in the zero bin, and housekeeping
profiles, whose expression is non-zero in all tissues and all intensities are of a
similar value (SD smaller than 1 quantile unit). The remaining profiles were
defined as uncategorized. The algorithms described below were deployed on
the 22 936 differentially expressed profiles.

Probesets to genes analysis
The association of probesets to genes was performed using the GeneAnnot
algorithm (Chalifa-Caspi et al., 2003, 2004). GeneAnnot comprehens-
ively identifies relationships between oligonucleotide array probesets and
annotated genes in GeneCards (Safran et al., 2002) by performing pair-
wise alignments between the probe sequences and gene transcripts, and

assigning sensitivity and specificity scores to them. A further step of probe-
set annotation, conducted by GeneTide (Shklar et al., 2004), was to assign
annotation based upon the transcript from which the probeset was derived.
This was carried out by an integration of transcript annotation data from
several resources such as UniGene (Wheeler et al., 2003) and AceView
(http://www.humangenes.org). Furthermore, these target sequences were
aligned against the human genome using BLAT (Kent, 2002), and assigned
a gene according to their genomic location using GeneLoc (Rosen et al.,
2003).

ALGORITHMS
Tissue specificity index
The index τ is defined as:

τ =
∑N

i=1 (1− xi)

N − 1
,

whereN is the number of tissues and xi is the expression profile com-
ponent normalized by the maximal component value. For example,
expression profile ‘0 8 0 0 0 2 0 2 0 0 0 0’ is defined to have τ = 0.95.
Other definitions, for example, based on entropy or geometric con-
siderations, were pursued but found less robust in terms of sensitivity
to extreme profile component values.

Binary patterns
We first defined the ‘gap’ index for each expression profile as the
maximum difference between the two neighboring values in the sor-
ted quantile vector. When the same ‘gap’ was found more than once
in a profile, the first gap, between the smaller neighboring values
with that gap was taken. The ‘gap’ was used to convert expression
profiles into binary form. For those 8224 differentially expressed
profiles with a ‘gap’ of at least 3, expression above the ‘gap’ was
interpreted as overexpressed (1) and the rest as underexpressed (0).
This set of 8224 probeset profiles form our ‘mingap’ set. The remain-
ing 14 712 differentially expressed profiles were classified to the best
matching binary patterns detected by ‘gap’ as follows. The Euclidean
distance was calculated between each of the 14 712 profiles and the
mean expression profile of each of the binary patterns. The pattern to
which this distance was smallest was selected as the matching binary
pattern for the profile. The binary index, IB, corresponding to each
binary pattern is defined as the number of 1s in the pattern.

Unsupervised clustering
The Superparamagnetic clustering (SPC) algorithm (Blatt et al.,
1996)was applied to the same set of profiles used in the binary pattern
analysis. Before clustering, each profile was centered and normal-
ized such that its mean was centered to zero, and its norm became
one [as described byKannan et al. (2001)]. The SPC parameters used
are detailed in Table S2 (Supplementary Material).

Ancestral tissue reconstructions
Given two binary tissue expression profiles, an ancestor profile was
inferred by first assuming that instances of agreement (both 1s or both
0s) are unaltered in the ancestor. In the disagreement cases (1 and
0, or 0 and 1), maximum parsimony is applied, with a majority call
of expression in the remaining tissues. Our method for inferring the
ancestors of each node in a dendrogram including the deep internal
nodes involved following the linkages of the hierarchically clustered
tree and successively inferring each node.

651

 at U
niversity of C

hicago on June 4, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 



! 4!

linked in suspension by the addition of 1% fresh formaldehyde with 10 minutes incubation at 

room temperature on a rotator. Cross-linking was quenched and cells were harvested by 
centrifugation and washed twice in cold PBS.  Nuclei were expected and Sonication was 

performed using a Misonix S4000 sonicator with 431A cup horn.  Fragment size between 200bp 
and 500bp was obtained and confirmed by gel electrophoresis.   

Immunoprecipitation was performed using commercially available anti-H3K4me3 
(Invitrogen cat# 49-1005) and anti-H3K27ac (Millipore cat# 200551) antibody. Briefly, between 

15-150 mg of isolated chromosomal DNA was incubated with 10 µg of antibody (anti-H3K4me3 
or anti H3K27ac) coupled to the proteinG Dynabeads (Invitrogen).  Antibody-bead complex was 

prepared following manufactures instructions. Chromatin-antibody-bead complex was incubated 
overnight at 4oC in 1X ChIP Dilution buffer (0.02% SDS, 2.2% Triton X-100, 2.4mM EDTA, 

33.4mM Tris pH 8.1, 334mM NaCl) supplemented with protease and phosphatase 

inhibitors.  After incubation the complex was washed 3x with IP wash buffer (NaCl) (100mM Tris 
pH8.0, 500mM NaCl, 1% NP-40, 1% deoxycholic acid) followed by 2X with IP wash buffer (LiCl) 

(100mM Tris pH8.0, 500mM LiCl, 1% NP-40, 1% deoxycholic acid) with 3 min rotation, and once 
with 1ml TE buffer.  Chromatin was eluted in 50mM Tris pH8.0, 10 mM EDTA, 1% SDS by 

incubation at 65oC with agitation. The eluted DNA was incubated at 65°C overnight to reverse 
the cross-links. Following incubation, the immunoprecipitated DNA was treated sequentially with 

RNase A and Proteinase K and was then desalted using the QIAquick PCR purification kit 
(Qiagen).  ChIP library preparation and high-throughput sequencing were performed on an 

Illumina Genome Analyzer II platform by following the protocol suggested by Illumina for 
sequencing chromosomal DNA.  Sequencing performed were two biological replicates at 

1x75bp strand specific for both H3K4me3 and H3K27ac, and an additional two biological 

replicates at 2x36bp for H3K4me3 by the Yale Center for Genome Analysis.   

To control for the uneven background distribution, ChIP-Seq data was processed using a 
two-sample analysis model where both a ChIP sample and a negative control (input) were 

sequenced for each biological sample. With this strategy, the peak calling and FDR are 
determined by reversing the control and treatment data. Sequence reads were aligned to the 

human reference genome (hg19) using the ultra-fast short DNA sequence aligner Bowtie.  

Sequencing depth for ChIP-Seq samples and input averaged 34.5 million and 32 million reads 
respectively per biological sample with >76% overall alignment rate.  For reads mapping and 
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peak calling we used the Model-based Analysis of ChIP-Seq (MACS, coupled with PeakSplitter 

as described for analyzing histone modification markers).   

DNaseI-Seq data generation: Human endometrium stromal cells (hESC) were grown in 
steroid-depleted DMEM, supplemented with 5% charcoal-stripped calf-serum and 1% 

antibiotic/antimycotic (ABAM).  At 100% confluency, cells were induced to decidualized DSC by 
treatment with 0.5 mM 8-Br-cAMP (Sigma) and 1mM medroxyprogesterone acetate (Sigma) for 

48-72 hours. Deciduaization of the hESC was confirmed by monitoring the specific gene 
expression of prolactin (PRL) by RT-qPCR. Chromatin was isolated as previously described. 

Chromatin was digested with 2-3 units of DNAse I (Roche cat#04716728001) at 4oC for 60 

minutes.  Reaction was quenched with 2x stop solution (1% SDS in 50mM EDTA) for 10 min at 
room temperature followed by a 1 min centrifugation.  Following centrifugation the digested 

chromatin was treated sequentially with Proteinase K and RNAse A and was then desalted 
using the QIAquick PCR purification kit (Qiagen).  Library preparation and high-throughput 

sequencing were performed on an Illumina Genome Analyzer II platform by following the 
protocol suggested by Illumina for sequencing chromosomal DNA.  Sequencing was performed 

for two biological replicates at 1x75bp strand specific by the Yale Center for Genome Analysis.   

FAIRE-Seq data generation: Human endometrium was obtained under a UNC IRB-

approved protocol by office suction curettage on normal women between the age of 18 and 38, 
all of whom had  regular, cyclic menses with an intermenstrual interval of 25-34 days. All normal 

subjects and lacked signs or symptoms of chronic diseases, including endometriosis and none 
were using hormonal medications. Portions of endometrial biopsies were frozen in liquid 

nitrogen in the clinic and transported to the laboratory where they were stored at -80°C 
until further use, while the remaining tissue was fixed in 10% buffered formalin for 

paraffin embedding and sectioning. Cycle phase was confirmed by examining hematoxylin and 
eosin stained sections using standard criteria.  FAIRE was performed as previously described 

(Simon et al. 2012). Sequencing was performed using 36- or 50-bp single-end reads (Illumina 

GAIIx or HiSeq 2000). Reads were filtered using TagDust and aligned to the reference human 
genome (hg19) with Bowtie using default parameters. 

PGR ChIP-Seq: PGR and Input ChIP were performed by Active Motif, Inc. (Carlsbad, 

CA) on HESCs isolated from six volunteer endometrial biopsy specimens obtained under a BCM 
IRB-approved protocol.  The six primary cultures of hESCs were treated with 10nM 17β-
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estradiol, 100nM medroxyprogesterone acetate, and 1mM 8-bromo-cAMP (all from Sigma-

Aldrich Co., St. Louis, MO) for 72 hours.  The hESCs were pooled and DNA was isolated before 
amplification using the Illumina ChIP-SeqDNASample Prep Kit.  Briefly, DNA ends were 

polished and 59-phosphorylated using T4 DNA polymerase, Klenow polymerase, and T4 
polynucleotide kinase.  After addition of 3’-adenine to blunt ends using Klenow fragment (3’-5’ 

exo minus), Illumina genomic adapters were ligated and the sample was size fractionated to 
175-225bp on a 2% agarose gel.  After 18 cycles of amplification using Phusion polymerase, 

resultant DNA libraries were tested by RT-qPCR for amplification quality.  DNA libraries were 
sequenced on an Illumina platform and aligned to the human genome (GRCh37/hg19, February 

2009) using Eland software.  Aligns were extended in silico to 110-200bp and assigned to 32bp-
bins along the genome.  The resulting histograms were stored as Binary Analysis Results (BAR) 

files.  Peaks were determined by applying a threshold of 18 (5 consecutive bins containing 0.18 

aligns) and storing the results as Browser Extendable Data (BED) files. The model-based 
analysis of ChIP-Sequencing (MACS) algorithm was used to find peaks by normalizaing PGR 

ChIP against Input control with a cutoff of p-value < 10-10.   
Identification of Transposable Element-containing regulatory elements: To Identify 

regulatory elements derived from transposable elements (TEs), we first intersected FAIRE-, 
DNase-, H3K27ac- and H3K4me3-Seq peaks from the analyses described above with human 

TE annotation of the hg18 assembly (files from the U.C.S.C genome browser, with Repeat 
Masker v3.2.7 and repbase libraries released on 20050112) using BEDTools (intersectBed with 

options wa and wb) (Quinlan and Hall 2010). Prior to intersection, we verified TE lineages using 
manually curated lineage information in recent Repeat Masker databases 

(http://www.repeatmasker.org) as well as using the UCSC genome browser (BLAT searches 

and the "Vertebrate Multiz Alignment & Conservation (100 Species)" track). We removed non-
transposable element annotations and converted the TE annotation (Repeat Masker .out file) to 

bed format. 
Intersection files were then parsed using a custom perl script to (i) evaluate TE content 

of each regulatory element peak and (ii) determine the enrichment (or depletion) of each family 
of TE relative to that genomic abundance of that family. (i) TE content is defined by the 

intersection length of TE annotations and peak coordinates (corrected for overlaps between 
TEs). If TE content is more than 10bp, peaks are classified as ‘TE-containing’. The counts of TE 

fragments are corrected using the interrupted repeats detection of Repeat Masker (for example, 

if a TE is fragmented in two because of a deletion or an insertion, it will be counted only one 
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time. This correction doesn’t account for inversions or complex rearrangements, but is more 

accurate than the basic fragment number). (ii) The proportion of each family of TE is estimated 
in ‘TE-containing’ peaks, with 100% corresponding to the total amount (counts or length) of all 

different TEs in the analyzed set. For each TE, this proportion of counts or length is compared to 
the genomic abundance of that family (with 100% corresponding to the total amount of these 

same TEs in the genome). The ratio between counts (in-set divided by in-genome) is used to 
estimate if a given TE is enriched or depleted. Significance of enrichment was inferred on TE 

counts with three standard statistical tests (binomial, hypergeometric, and Poisson models), but 
figures are built on length since it is more representative of a given TE contribution. 

 Region-Gene associations:  We used the Genomic Regions Enrichment of Annotations 
Tool (GREAT) (McLean et al., 2010) to associated regulatory elements with nearby genes using 

the default association rules. To identify ancestral and recruited genes that were expressed in 

hESC we intersected ancestral and recruited genes sets with the set of genes expressed in 
hESCs. 

De novo Motif and TFBS finding: To identify sequence motifs that were enriched in ‘TE-

derived’ regulatory elements we used a de novo motif discovery approach. First we used 
CisFinder webserver (http://lgsun.grc.nia.nih.gov/CisFinder/) to identify over-represented short 

DNA motifs in ‘TE-derived’ regulatory elements using FDR=1x10-4, counting motifs once per 

sequence, enrichment≥3, match threshold≥0.9, clustering motifs by similarity, using the 
“clustered” option. The top 10 scoring motifs from CisFinder were annotated using the STAMP 

webserver (htpp://www.benoslab.pitt.edu/stamp/) with TRANSFAC (families labeled), the 
Pearson correleation coefficient based column comparison metric, ungapped Smith-Waterman 

alignment, and iterative refinement. Previously published ChIP-Seq data for 128 transcription 
factors (TFs) generated by ENCODE as well as published ChIP-Seq data for AHR and ARNT 

(Lo and Matthews, 2012), FOXO3 (Eijkelenboom et al., 2013) were used to identify TFs with 
binding sites enriched within TEs compared to non-TE containing regions of the genome. 

TE & Regulatory Element Correlations: Our observation that specific TEs are enriched 
within PGR-, FAIRE-, DNase-, H3K27ac, and H3K4me3-Seq peaks could result from a genome-

wide bias for TEs to be located within regulatory elements. To explore this possibility we used a 
suite of permutation tests implemented in the GenometriCorr R package (Favorov et al., 2012) 

to determine if TEs and regulatory elements are generally located closer to each other than 
expected given uniform (random) genomic distribution and if so if they intersect more often than 
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expected. For each regulatory element dataset we calculated the correlation between the 

location of the peak and transposons across the genome significance of the correlation was 
obtained by permuting the location of peaks across the genome 1000 times. To infer the 

expected number of PGR-, FAIRE-, DNase-, H3K27ac, and H3K4me3-Seq peaks that contain 
transposable element we calculated the median   number of permuted peak/transposon 

intersections to  generate enrichment estimates; empirical P-values for enrichment estimates 
were calculated from distribution of the number of peaks in each permuted dataset that 

overlapped transposable elements. 

We found a statistically significant positive correlation between the absolute distance 

between FAIRE-Seq (P<0.001), DNase-Seq (P<0.001), H3K27ac-Seq (P<0.001) and 
H3K4me3-Seq (P<0.001) peaks and TEs, such that these distances were closer than expected 

(i.e. in the lower tail of the permuted distributions) given a random distribution of peaks relative 
to TEs. However, FAIRE-Seq (enrichment: 0.73; P<0.001), DNase-Seq (enrichment: 0.64; 

P<0.001), H3K27ac-Seq (enrichment: 0.82; P<0.001), and H3K4me3-Seq (enrichment: 0.64; 
P<0.001) peaks contained significantly fewer transposable elements than expected given a 

random distribution. These results indicate that while transposons are generally found close to 
regulatory elements they occur less frequently than expected within regulatory elements, thus 

our observation that specific TEs are enriched within FAIRE-, DNase-, H3K27ac-, and 

H3K4me3-Seq peaks does not result from a general bias for TEs to be found in regulatory 
elements.  
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Fig. S1. Recruited genes are 
preferentially expressed in decidualized 
endometrial stromal cells, related to 
Figure 1. Venn diagram showing in which 
of the four major cell-types found in 

pregnant endometrium recruited genes are 
expressed. dESC, cAMP/MPA decidualized 

endometrial stromal cells; dNK, decidual 
natural killer cells; dMP, decidual 

macrophage; dEC decidual endothelial 
cells.
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Fig. S2. Genes that lost endometrial expression are enriched in transporter and ion 
channel functions, related to Figure 2. 

(A) Manhattan plot of -log10 P-values (hypergeometric test) for moue knockout phenotypes 
enriched among genes that lost endometrial expression in early mammals. Phenotypes 

are grouped by anatomical system. Horizontal red line indicates the dataset-wide false 
discovery rate (FDR q-value=0.1). 

(B) Word cloud of mouse knockout phenotypes enriched among genes that lost endometrial 
expression in the Mammalian (light blue), Therian (blue), and Eutherian (red) stem-

lineage. Abnormal phenotypes are scaled to the log2 enrichment of that term (see inset 

scale). 
(C) Manhattan plot of -log10 P-values (hypergeometric test) for Gene Ontology (GO) terns 

enriched among genes that lost endometrial expression in early mammals. Go terms are 
grouped into biological process, cellular component, and molecular function. Horizontal 

red line indicates the dataset-wide false discovery rate (FDR q-value=0.1). 
(D) Word cloud of GO terms enriched among genes that lost endometrial expression in the 

Mammalian (light blue), Therian (blue), and Eutherian (red) stem-lineage. GO terms are 
scaled to the log2 enrichment of that term (see inset scale). 

(E) Loss of ion channels from endometrial expression in the Eutherian (Eu), Therian (Th), 

and Mammalian (Mam) stem-lineages. Stacked bar chart shows the number of ligand 
gated ion channels (LGIC), voltage gated ion channels (VGIC), transporters, and other 

kinds (Other) ion channels that lost endometrial expression in each lineage.  

 

 

 

 


