Supplementary Information

Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells

Shin-Ichi Mae, Akemi Shono, Fumihiko Shiota, Tetsuhiko Yasuno, Masatoshi Kajiwara, Nanaka Gotoda-Nishimura, Sayaka Arai, Aiko Sato-Otubo, Taro Toyoda, Kazutoshi Takahashi, Naoki Nakayama, Chad A. Cowan, Takashi Aoi, Seishi Ogawa, Andrew P. McMahon, Shinya Yamanaka & Kenji Osafune^{*}

*To whom correspondence should be addressed.

Email: <u>osafu@cira.kyoto-u.ac.jp</u>

Supplementary Figure S1. Normal karyotypes of OSR1-GFP reporter hiPSC lines (3D36, 3D45, 3F3 and 3I49).

Supplementary Figure S2. Effects of around 40 different growth factors on *OSR1* expression from two hESC lines (HUES8 and 9).

(a) A list of growth factors added to hESCs cultured on MEF feeder layer. (b) qRT-PCR analysis of the expression of *OSR1* induced by growth factors. Samples of hESCs (HUES8 or HUES9) without factors were used as a control to normalize the data. *; 100 ng/ml hBMP7.

(a) qRT-PCR analyses of the marker gene expression for ME (*BRACHYURY, GSC, MIXL1*), ectoderm (*SOX1* and *PAX6*) and endoderm (*SOX17* and *FOXA2*) on culture day 3. White Bars : no factors; black bars (AW): 100 ng/ml activin A + 100 ng/ml Wnt3a. Each value is normalized to samples on day1 before treatments. Note that the expression of *SOX1* and *PAX6* is so low that the histogram bars are at the baseline. (b) The suppression of the expression of *BRACHYURY* by adding SB431542 and/or Frizzled-Fc chimeric protein to the treatment with 100 ng/ml activin A + 100 ng/ml Wnt3a, as determined by RT-PCR analyses. Lane 1: DMSO (vehicle) control; 2: 10 μ M SB431542; 3: 1 μ g/ml Frizzled-Fc; 4: 10 μ M SB431542 + 1 μ g/ml Frizzled-Fc. The data from three independent experiments are presented as the means \pm SD (n=3) in **a**.

Supplementary Figure S4. Replacement of Wnt3a with a chemical compound, CHIR99021.

(a) The differentiation of OSR1(GFP)⁺ cells on culture day 11 was analyzed by flow cytometry. The data from three independent experiments are presented as the means \pm SD (n=3). (b) RT-PCR analyses of *OSR1* expression in a hiPSC line, 253G1, and a hESC line, khES3, on culture day 11. Wnt3a: Stage 1, 100 ng/ml activin A + 100 ng/ml Wnt3a, Stage 2, 100 ng/ml BMP7 + 100 ng/ml Wnt3a; CHIR99021: Stage 1, 100 ng/ml activin A + 1 μ M CHIR99021. Stage 2, 100 ng/ml BMP7 + 1 μ M CHIR99021. 201B7 EB; spontaneously differentiating EBs generated from 201B7 on day 16 of culture without any inducing factors.

Supplementary Figure S5. Differentiation of IM cells in monolayer culture formats.

(a) The differentiation of OSR1(GFP)⁺ cells on culture day 11 of monolayer culture (Colony method) was analyzed by flow cytometry. AW \rightarrow BW: Stage 1, 100 ng/ml activin A + 100 ng/ml Wnt3a, Stage 2, 100 ng/ml BMP7 + 100 ng/ml Wnt3a. (b) Substitution of Wnt3a for CHIR99021 in the colony method. The induction rate of OSR1⁺ cells on day 11. The data from three independent experiments are presented as the means \pm SD (n=3).

Supplementary Figure S6. Highly efficient induction of OSR1⁺ cells with single cell method.

(a) The number of OSR1⁺cells generated at the different time points of single cell method. The input cell number was 1.5×10^6 cells/cm² in all the experiments. The data from three independent experiments are presented as the means \pm SD (n=3). (b) *In situ* hybridization analysis using *OSR1* probes and immunostaining using antibodies against GFP on differentiated cells on culture day 11 of single cell method. (-): no factors, (+): Stage 1, 100 ng/ml activin A + 3 μ M CHIR99021, Stage 2, 100 ng/ml BMP7 + 3 μ M CHIR99021. Differentiated cells on culture day 11 were dissociated with trypsinization and centrifuged onto a slide. Note that almost all cells treated with the single cell method express *OSR1* transcript (lower panels). Scale bars, 100 μ m.

Supplementary Figure S7. Comparison of three induction protocols for OSR1⁺ cells.

(a) The number of OSR1⁺ cells generated in each protocol. The input cell number was 1.5×10^6 cells/cm² in all the experiments. The data from three independent experiments are presented as the means \pm SD (n=3). (b) Fluorescence intensity of OSR1⁺ cells differentiated by the three induction methods. Fluorescence intensity of OSR1⁺ cells on culture day 11 of the three induction methods (EB, Colony and Single cell methods) was shown by a histogram. 100 ng/ml Wnt3a: Stage 1, 100 ng/ml activin A + 100 ng/ml Wnt3a, Stage 2, 100 ng/ml BMP7 + 100 ng/ml Wnt3a; 1µM CHIR99021: Stage 1, 100 ng/ml activin A + 1 µM CHIR99021, Stage 2, 100 ng/ml activin A + 3 µM CHIR99021, Stage 2, 100 ng/ml BMP7 + 3 µM CHIR99021.

Supplementary Figure S8. *OSR1* expression in multiple hiPSC/ESC lines induced with EB method.

A comparison of the *OSR1* expression on culture day 11 in multiple hiPSC/ESC lines treated using the EB method. Samples of an OSR1-GFP knock-in hiPSC line, 3D45, derived from 201B7 cells were used as controls to normalize the data. The data from three independent experiments are presented as the means \pm SD (n=3).

Supplementary Figure S9. Expression patterns of IM marker genes in mouse embryos.

Immunostaining of the sections of embryonic day (E) 9.5 Osr1-GFP knock-in mouse embryos using antibodies against GFP and other IM markers, Pax2, Wt1 and Sall1. Scale bars, 100 μ m in **a**, **c** and **e**, 50 μ m in **b**, **d** and **f**.

Supplementary Figure S10. Weak or no expression of marker genes for other lineages than IM derivatives in OSR1⁺ cells and the grafts.

The gene expression of markers for endodermal, ectodermal or other mesodermal lineages than IM derivatives in OSR1(GFP)⁺ cells on culture day11 and the grafts analyzed by RT-PCR.

ACAN; aggrecan, ALB; albumin, AAT; alpha-1 antitrypsin, INS; insulin, AMY2A; amylase, alpha 2A.

Supplementary Figure S11. RA addition does not provide any advantageous effects on IM induction from hiPSC/ESCs.

(a) The differentiation of OSR1 (GFP)⁺ cells on culture day 11 (EB method) was analyzed by flow cytometry. RA(-): Stage 1, 100 ng/ml activin A + 100 ng/ml Wnt3a, Stage 2, 100 ng/ml BMP7 + 100 ng/ml Wnt3a; RA(+): Stage 1, 100 ng/ml activin A + 100 ng/ml Wnt3a, Stage 2, 100 ng/ml BMP7 + 100 ng/ml Wnt3a + 0.1 μ M RA. (b) The *OSR1* expression on day 11 of differentiation culture from a hiPSC line, 253G1, and a hESC line, khES3, treated with or without RA during Stage 2 of the procedure. 201B7 EB; spontaneously differentiating EBs generated from 201B7 on day 16 of culture without any inducing factors. (c, d) The differentiation of OSR1(GFP)⁺ cells at culture day11 of Colony (c) and Single cell (d) methods was analyzed by flow cytometry. RA(-): Stage 1, 100 ng/ml activin A + 3 μ M CHIR99021, Stage 2, 100 ng/ml BMP7 + 3 μ M CHIR99021 + 0.1 μ M RA. The data from three independent experiments are presented as the means \pm SD (n=3) in **a**, **c** and **d**.

Supplementary Figure S12. Only a few human DBA⁺ cells are observed in organ culture samples.

Immunostaining of histological sections of organ culture samples on day 7. Double staining with anti-human mitochondria (hMito) and the ureteric bud lineage marker, DBA. Scale bars, 100 μ m in **a**, 50 μ m in **b**.

Supplementary Table S1. Frequency of emergence of renal marker-positive

Marker name	Expression sites in IM derivative organs	Number of experiments performed	Percentage of wells containing the marker-positive cells (Mean ± SD)
LTL	Proximal tubule	7	2.0±1.6
AQP1		3	100.0±0.0
PNA	Glomerulus	3	45.3±14.5
PODOCALYXIN	(Podocyte)	3	49.0±26.1
DBA	Nephric duct and Ureteric bud	3	93.3±3.2
HSD3β	Gonad or Adrenal cortex	4	6.0±2.8

cells differentiated from OSR1⁺ IM cells

OSR1⁺ IM cells isolated by flow cytometry on culture day 11 were cultured on 96-well plates with BMP7 and either Wnt3a or CHIR99021 for an additional 7 days, and the number of wells that contain the marker-positive cells was counted. Each experiment used 96 wells.

Gene name	Primer Sequence	Size (bp)	
PGK-Neo check F	CTCAGTTGGAATTCCAGCAG		
PGK-Neo check R	CTGCCTGAAGGAAGGAGTAGTTGGTG		
	CAATGTGGCCGAGGACTTTG	126	
np-ACTIN	CATTCTCCTTAGAGAGAAGTGG	126	
m 0 A stin	GATCTGGCACCACACCTTCT	129	
mp-Acun	GGGGTGTTGAAGGTCTCAAA	138	
ECED	ACGTAAACGGCCACAAGTTC	120	
EGFP	AGTTCACCTTGATGCCGTTC	432	
Mesendoderm			
	AATTGGTCCAGCCTTGGAAT	110	
hBRACHYURY	CGTTGCTCACAGACCACA	112	
1000	GAGGAGAAAGTGGAGGTCTGGTT	70	
nGSC	CTCTGATGAGGACCGCTTCTG	12	
1 3 41371 1	TTGGTTCAAAGCTGGACTCA	107	
hMIXLI	CTGTCAGTCATGGCTCCTCA	107	
Ectoderm			
	CACAACTCGGAGATCAGCAA	133	
hSOX1	GGTACTTGTAATCCGGGTGC		
	GTCCATCTTTGCTTGGGAAA		
hPAX6	TAGCCAGGTTGCGAAGAACT	110	
Endoderm			
	CAGCAGAATCCAGACCTGCA		
hSOX17	GTCAGCGCCTTCCACGACT	68	
	GGAGCGGTGAAGATGGAA		
hFOXA2	TACGTGTTCATGCCGTTCAT	122	
Intermediate mesoderm			
	GCTGTCCACAAGACGCTACA		
hOSR1	CCAGAGTCAGGCTTCTGGTC	137	
	AGATTCCCAGAGTGGTGTGG		
hPAX2	GGGTATGTCTGTGTGCCTGA	264	
	TCATGCAGGTGAAGCAGTTC		
hLIM1	TCCAGGGAAGGCAAACTCTA	148	
	GGCAGCACAGTGTGTGAACT	136	
hWT1	CCAGGCACACCTGGTAGTTT		
	CACCAATGGGCTGCACCATCAC		
hCITED2	GCCGCTCGTGGCATTCATGTTG	157	
	GGACAGGCACCATACAGCTACC		
hEYA1	ATGTGCTGGATACGGTGAGCTG	189	
hSALL1	AGCGAAGCCTCAACATTTCCAATCC	147	

Supplementary Table S2. Primer sequences

	AATTCAAAGAACTCGGCACAGCACC		
	GAGCGACCTTACACCTGTGA	155	
mOsr1	GTCTTGTGGACAGCGAGAGT		
	GTTCCCAGTGTCTCATCCAT	<u> </u>	
mPax2	GGCGTTGGGTGGAAAGG	68	
T • 1	CAGTGTCGCCAAAGAGAACA	101	
mLiml	TGAGACGTTGGCACTTTCAG	121	
N <i>L</i> 4	AAACCTGGAAACCTGGAAGG	10.6	
mwtl	GGCTCCTCTCCGTCCTAACT	126	
	TGCAGAAGCTCAACAACCAG	107	
mCited2	CTGGTTTGTCCCGTTCATCT	107	
	AATTTATGCCTGGCAACTGG	117	
mEyal	CAGACCTCCCACGTTGTTTT	11/	
	AGCCTCAACATTTCCAATCC	10.5	
mSall1	TGGGCATCCTTGCTCTTAGT	106	
Metanephric mesenchyme			
	AGGAAAGGGAGAACAACGAGAA		
hSIX2	GGGCTGGATGATGAGTGGT	132	
	TGGAACGCGAGTTTTTCTTT		
hHOXD11	CTGCAGACGGTCTCTGTTCA	149	
Nonhrie duct	endendheddieleidileh		
Instants had			
Ureteric bud			
hSALL4	CAGATCCACGAGCGGACTCA	109	
	CCCCGTGTGTCATGTAGTGA		
hRET	TATCCTGGGATTCCTCCTGA	166	
	TCTCCAGGTCTTTGCTGATG		
hHOXB7	GTGGACTGTGGGTCTGGACT	114	
	GAACACGCGAGTGGTAGGTT		
Stromal progenitor			
LEOVD1	TGCGGGTCCCTCTATTTATG	100	
nfoxDi	TAACGCCTGGACCTGAGAAT	190	
Gonad			
Adrenal cortex			
	GCGAACCTCTTTCAAGCATC		
hLHX9	TCCTTCTGAATTTGGCTCGT	164	
	CAAGGAGTACGCCTACCTCA		
hDAX1/NR0B1	GCGTCATCCTGGTGTGTTC	131	
	CAGGAGTTTGTCTGCCTCAA		
hSF1/NR5A1	GCACAGGGTGTAGTCAAGCA	126	
	GAGCCATTCCTGAAAAGAGC		
hHSD3β2	GATGAAGACTGGCACACTGG	168	
hGATA4	CTGTCATCTCACTACGGGCA	132	

	GGGAGACGCATAGCCTTGT		
	CATGACTCCAACTTCCACCT	14-	
hGATA6	ACTTGAGCTCGCTGTTCTCG	146	
Adult kidney			
1.4.0.01	ATTAACCCTGCTCGGTCCTT	221	
hAQPI	ACCCTGGAGTTGATGTCGTC	221	
	TCATCATCACCATCGTCTGC	100	
hPODOCALYXIN	CCACCTTCTTCTCCTGCATC	198	
Epithelia			
LE CADUEDIN	CGGAGAAGAGGACCAGGACT	174	
hE-CADHERIN	GCCGCTTTCAGATTTTCATC	174	
Cardiomyocyte			
1 1 1// 1/2 5	CCCACGCCCTTCTCAGTCAA	144	
hNKX2-5	GTAGGCCTCTGGCTTGAAGG	144	
	CTGGAGGCCGAGCAGAAGCGCAACG	250	
haMHC	GTCCGCCCGCTCCTCTGCCTCATCC	258	
1	ATGAGCGGGAGAAGGAGCGGCAGAAC	0.1.1	
hcTnT	TCAATGGCCAGCACCTTCCTCCTCTC	241	
Blood			
1.0.4 = 1.1	CAAGCTTCGTGGAACTCTCC	100	
hGATAI	ACTGACAATCAGGCGCTTCT	190	
1 CD 41	ATCAGTTTGTGCTGCAGTCG	0.65	
hCD41	TCCCCCTCTTCATCATCTTC	265	
1 CD 45	TGTGATGCTTGTTCCCTTCA		
hCD45	ACTGGAGTGTGGAGCAGCTT	111	
Vascular			
endothelium			
	TGATCGGAAATGACACTGGA	121	
NFLKI	CACGACTCCATGTTGGTCAC	131	
AVE CADIEDIN	ACACCTCACTTCCCCATCA	05	
NVE-CADHERIN	GACCTTGCCCACATATTCTCC	95	
	GGGGTCATCTCTGGATTCAA	111	
nv w F	AGGCAAACATCTCCCACAAC	111	
Skeletal muscle			
LAVOCENIN	TAAGGTGTGTAAGAGGAAGTCG	407	
NWIY OGENIN	CCACAGACACATCTTCCACTGT	437	
1. NANDE	GCCTGAAGAAGGTCAACCAG	1 ~ 1	
hMYF5	GGAACTAGAAGCCCCTGGAG	461	
11 0005	CGATATACCAGGTGCTCTGAGGG	100	
hMYOD	GGGTGGGTTACGGTTACACCTGC	430	
Bone or Cartilage			
hRUNX2	ATGCTTCATTCGCCTCACAAACAAC	286	

	TGAAGCGCCGGCTGGTGCTC		
LOSTEOCALCIN	GACTGTGACGAGTTGGCTGA	119	
IIOSTEOCALCIN	CTGGAGAGGAGCAGAACTGG		
LACAN	TGAGGAGGGCTGGAACAAGTACC	240	
hACAN	GAGGTGGTAATTGCAGGGAACA	349	
Liver			
1 4 1 D	CCTTTGGCACAATGAAGTGGGTAACC	255	
nALB	CAGCAGTCAGCCATTTCACCATAGG	333	
<u> ከ ለ ለ ጥ</u>	ACATTTACCCAAACTGTCCATT	192	
NAAI	GCTTCAGTCCCTTTCTCGTC	185	
	CCTTACATATACACACCCTTTG	170	
nCTP3A4	GGTTGAAGAAGTCCTCCTAAGCT	170	
Pancreas			
LDDV1	TGTTCCGAGGTAGAGGCTGT	251	
NPDAT	AACATAACCCGAGCACAAGG	251	
hinic	GCCTTTGTGAACCAACACCT	229	
IIINS	TGCTGGTTCAAGGGCTTTAT	550	
	TGGAGAAGGATTACGTGCGT	259	
NAM Y ZA	GAAGGTACGAAACCCCAACC	338	
Intestine			
	TGCAGCTCATGACAATTTGA	140	
ΠΓΑΒΡ2	CCCTGAGTTCAGTTCCGTCT	149	
	GCAGAGCAAAGGAGAGGAAA	106	
nCDX2	AAGGGCTCTGGGACACTTCT	136	
Neuron			
LO TUDIU IN	CAGATGTTCGATGCCAAGAA	142	
IIP-I UDULIN	TGCTGTTCTTGCTCTGGATG	142	
LCEAD	GGCCCGCCACTTGCAGGAGTACCAGG	220	
NGFAP	CTTCTGCTCGGGCCCCTCATGAGACG	328	
a 1 1			

Gene names and primer sequences (5'–3') for RT-PCR and qRT-PCR are shown.

ACAN; aggrecan, ALB; albumin, AAT; alpha-1 antitrypsin, INS; insulin, AMY2A; amylase,

alpha 2A.

Antibody & Lectin	Dilution rate	Manufacturer
GFP	1:200	Aves Labs, Inc., GFP-1020
PAX2	1:100	Covance Research Products, PRB-276P
WT1	1:50	Santa Cruz Biotechnology, C-19
SALL1	1:50	Perseus Proteomics Inc., PP-K9814-001
SALL4	1:200	Abnova, M03
HSD3β	1:50	Santa Cruz Biotechnology, 37-2
GATA4	1:200	Santa Cruz Biotechnology, C-20
GATA6	1:200	Santa Cruz Biotechnology, H-92
LTL	1:200	Vector laboratories, B-1325
AQP1	1:500	MILLIPORE, AB3272
PNA	1:200	Vector laboratories, RL-1072
PODOCALYXIN	1:200	R&D SYSTEMS, MAB1658
DBA	1:200	Vector laboratories, FL-1031
CYTOKERATIN	1:200	SIGMA, C2562
αSMA	1:200	SIGMA, A2547
E-Cadherin	1:200	BD Pharmingen, 610181
Laminin	1:200	SIGMA, L9393
Human nuclear antigen	1:500	MILLIPORE, MAB1281
Human mitochondria	1:200	Abcam, Ab3298

Supplementary Table S3. Antibodies and lectins

Supplementary methods

Cell culture.

miPSCs (492B-4 and 20D-17) and mESCs (J1 and D3) were maintained on feeder layers of mitomycin C-treated STO cells in DMEM (Nacalai Tesque) supplemented with 15% FBS (Invitrogen), 500 U/ml penicillin/streptomycin, 0.1 mM non-essential amino acid (Invitrogen), 2 mM glutamine (Invitrogen), 0.55 mM 2-mercaptoethanol (Invitrogen) and leukemia inhibitory factor (LIF). As a source of LIF, we used a conditioned medium (1:10,000 dilution) from Plat-E cell cultures that had been transduced with a LIF-encoding vector³⁷. miPSC and mESCs were passaged with enzymatic dissociation using 0.25% trypsin/EDTA (Invitrogen).

Karyotyping.

Karyotyping with a chromosomal G-band analysis of the OSR1-GFP hiPSC reporter line was carried out by the Nihon Gene Research Laboratories, Japan.

RT-PCR and real-time quantitative **RT-PCR** (q**RT-PCR**).

Total RNA was isolated from triplicate samples in three independent experiments using an RNeasy kit (Qiagen) according to the manufacturer's recommendations, followed by cDNA synthesis using standard protocols. Briefly, first-strand cDNA was synthesized from 1 μ g of total RNA using ReverTra Ace (TOYOBO). The cDNA samples were subjected to PCR amplification using a thermal cycler (Veriti 96 well Thermal Cycler, Applied Biosystems). PCR was performed using the Ex-Taq PCR kit (Takara) according to the manufacturer's instructions. The PCR cycles were as follows: for β -ACTIN, initial denaturation at 94°C for 2.5 min, followed by 25 cycles of 94°C for 30 s, 60°C for 1 min, 72°C for 30 s, and a final extension at 72°C for 10 min. For the other genes, the cycles consisted of initial denaturation at 94°C for 2.5 min, followed by 30-40 cycles of 94°C for 30 s, 58-62°C for 30 s, 72°C for 30 s, and final extension at 72°C for 7 min. qPCR was performed using the Step One Plus Real-Time PCR System (Applied Biosystems) and SYBR Green PCR Master Mix (Takara). Denaturation was performed at 95°C for 30 s followed by 45 cycles at 95°C for 5 s and at 60°C for 30 s. As recommended by the manufacturer, the threshold cycle method was used to analyze the data for the gene expression levels, and was calibrated to those of the housekeeping gene, β -ACTIN. The PCR reactions were performed in triplicate for each sample. The primer sets are shown in **Supplementary Table S2**.

Flow cytometry and cell sorting.

The cells were treated with 10 μ M Y27,632 before dissociation, incubated with 0.25% trypsin/EDTA for 5 min at 37°C, and dissociated by pipetting in PBS with 2% FBS. Dead cells stained with Propidium-iodide (1 μ g/ml, Wako) were excluded from the analysis. The cells were analyzed and sorted using a FACS Aria II cell sorter (BD). The isolated cells were collected into PBS with 2% FBS containing 10 μ M Y27,632.

Immunostaining and lectin staining.

The cells were fixed with 4% paraformaldehyde (PFA)/PBS for 20 min at 4°C. After washing with PBS, the cells were blocked with 1% normal goat or donkey serum (Chemicon), 3% BSA (Nacalai Tesque) /PBST (PBS/0.25% Triton X-100) for 1h at room temperature. For anti-human nuclear antigen staining, fixed samples were incubated with 0.2% Tween20/PBS for 20 min at room temperature, and then blocked with 5% donkey serum/0.4% Triton X-100/PBS for 1h at room temperature. Primary antibodies were diluted in each blocking solution and incubated with samples overnight at 4°C. Secondary antibodies were incubated for 1h at room temperature. The details of antibodies and lectins used for these studies are

shown in **Supplementary Table S3**.

Supplementary Methods – Additional reference.

37. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. *Gene Ther* **7**, 1063-1066 (2000).