Quantitative Analysis of Metabolic Mixtures by 2D ¹³C-Constant-Time TOCSY NMR Spectroscopy

Kerem Bingol,^{1,2} Fengli Zhang,² Lei Bruschweiler-Li,^{2,3} and Rafael Brüschweiler^{*1,2,3}

¹Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306

²National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310

³Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306

*To whom correspondence should be addressed:

Rafael Brüschweiler, 102 Varsity Way, CSL Rm. 3006, Florida State University, Tallahassee, FL 32306-4390. Phone +1 (850) 644-1768; Fax +1 (850) 644-8281;

Email: <u>bruschweiler@magnet.fsu.edu</u>

Figure S-1. Pulse sequence of 2D ¹³C-¹³C constant-time (CT) TOCSY experiment. Narrow and wide black semi-elliptical shapes on the carbon channel (¹³C) represent $\pi/2$ and π shaped radio-frequency pulses, respectively. The constant-time period T is chosen so that $T = 1/{}^{1}J_{cc} \approx 1/37.6 Hz = 26.6 ms$. Pulse phases are cycled as follows: three $\pi/2$ pulses from left to right = (x, -x), (x, x, x, x, -x, -x, -x, -x, -x), (x, x, -x, -x, -x); all three π pulses = (x); and receiver phase = (x, -x, -x, x, -x, -x, -x, -x). The pulse lengths are 248 µs for $\pi/2$ pulses and 192 µs for π pulses. The $\pi/2$ pulses are Gaussian cascade 4 (G4)¹ pulses and the π pulses are Quaternion cascade 3 (Q3)² pulses. The pulsed-field gradient pulses have a duration of 1 ms with a gradient strength of 38.5 G/cm and 33.7 G/cm, respectively. Quadrature detection in the indirect dimension is achieved by the States-TPPI method. ¹H and ¹⁵N (in the case of ¹⁵N enriched samples) are decoupled during t₁ and t₂ periods by WALTZ and GARP schemes, respectively. TOCSY mixing is performed by FLOPSY-16. The mixing times are set to 4.7 ms for short and 47 ms for long TOCSY mixing.

Figure S-2. Quantitative comparison of experimental and simulated (predicted) crosspeak integrals of 2D ¹³C-¹³C constant-time (CT) TOCSY with a long mixing time ($\tau_m =$ 47 ms) of 9 carbohydrate isomers: fructose β -furanose (a), fructose β -pyranose (b), glucose β -pyranose (c), glucose α -pyranose (d), ribose β -furanose (e), ribose β -pyranose (f), ribose α -furanose (g), galactose β -pyranose (h) and galactose α -pyranose (i). Fructose α -furanose is not shown in this figure. The predicted peak integrals are based on the quantum-mechanical treatment of Eq. (1) (Method A). Parameters R and a are defined as in Figure 2 and 3 of the main text.

Figure S-3. Quantitative comparison of experimental and simulated (predicted) crosspeak integrals of 2D ¹³C-¹³C constant-time (CT) TOCSY with a short mixing time ($\tau_m =$ 4.7 ms) of the same 9 carbohydrate isomers as in Figure S-2: fructose β -furanose (a), fructose β -pyranose (b), glucose β -pyranose (c), glucose α -pyranose (d), ribose β -furanose (e), ribose β -pyranose (f), ribose α -furanose (g), galactose β -pyranose (h) and galactose α -pyranose (i). The predicted peak integrals are based on the quantummechanical treatment of Eq. (1) (Method B). Parameters R and a are defined as in Figure 2 and 3 of the main text.

Figure S-4. Quantitative comparison of experimental and simulated (predicted) crosspeak integrals of 2D ¹³C-¹³C constant-time (CT) TOCSY with a short mixing time ($\tau_m =$ 4.7 ms) of the same 9 carbohydrate isomers as in Figure S-2: fructose β -furanose (a), fructose β -pyranose (b), glucose β -pyranose (c), glucose α -pyranose (d), ribose β -furanose (e), ribose β -pyranose (f), ribose α -furanose (g), galactose β -pyranose (h) and galactose α -pyranose (i). The predicted peak integrals are based on the analytical approximations (Method C).

References

- (1) Emsley, L.; Bodenhausen, G. Chem. Phys. Lett. 1990, 165, 469-476.
- (2) Emsley, L.; Bodenhausen, G. J. Magn. Reson. 1992, 97, 135-148.