SUPPLEMENTARY DATA

Increasing Fragmentation of Disulfide-Bonded Proteins for Top-Down Mass Spectrometry by Supercharging

Jiang Zhang¹, Rachel R. Ogorzalek Loo^{2,3}, and Joseph A. Loo^{1,2,3,*}

¹Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, 90095, United States

²Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, California, 90095, United States

³UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California, 90095, United States

* Corresponding author. Tel.: +1 310 794 7023; fax: +1 310 206 4038. E-mail address: JLoo@chem.ucla.edu (J.A. Loo).

Figure S1. ECD mass spectra of β -lactoglobulin (0.5 μ M) in (a-b) 50:50:0.1 ACN: H₂O: FA and (c-d) with 150 mM sulfolane.

Figure S2. Relative fraction of product ions showing disulfide bond cleavage as a function of precursor charge for ECD of β -lactoglobulin.

Figure S3. ECD product ions of β -lactoglobulin (bovine) containing potential disulfide cleavage by hydrogen radical capture, while the protein backbone inside the disulfide bond remain intact.

Figure S4. Mass accuracy of CAD-derived product ions of β -lactoglobulin for the 15+-17+ charge states (with sulfolane) and 12+-14+ charge states (without sulfolane).

Figure S5. CAD mass spectra of β -lactoglobulin (bovine) (0.5 μ M) for the (a) 17+ and (b) 14+ precursors. High abundance product ions with disulfide cleavages are labeled in red.

Figure S6. CAD mass spectra of β -lactoglobulin product ions with disulfide bond cleavage: (a) theoretical isotopic calculation of b₁₃₄, (b) experimental data for charge state 17+, (c) complementary y₂₈ ion. The circle sign in superscript denotes water loss.

Figure S7. Relative fraction of product ions showing disulfide bond cleavage as a function of precursor charge for CAD of β -lactoglobulin.

Figure S8. ESI mass spectra of trypsin inhibitor (soybean) (1.2 μ M) in (a) 150 mM sulfolane in 50:50:0.1 ACN: H₂O: FA and (b) without sulfolane.

Figure S9. CAD product ion map of trypsin inhibitor (soybean) in 100 mM sulfolane.

Figure S10. Mass accuracy of CAD-derived product ions of trypsin inhibitor for the 15+-18+ charge states. Product ions corresponding to disulfide bond cleavage Cys39-Cys86 were observed.

Figure S11. ECD product ion map of trypsin inhibitor (soybean) for charge states (a) 18+, (b) 17+ and (c) 16+ under supercharging conditions, and (d) 15+ without sulfolane.

Figure S12. ESI mass spectrum of human proinsulin (a) with 150 mM sulfolane, and (b) without sulfolane. CAD mass spectra for charge states (c) 9+ and (d) 8+ with sulfolane, and (e) 7+ without sulfolane are shown.

Figure S13. CAD mass spectra of chicken lysozyme for supercharged (a) 13+ and (b) 12+ precursors, and (c) 11+ and (d) 10+ precursors without sulfolane added.

Figure S14. CAD product ions of chicken lysozyme: (a) b_{18}^{2+} , one disulfide bond cleavage; (b) y_{28}^{2+} , two disulfide bond cleavages; (c) y_{49}^{4+} , three disulfide bond cleavages.