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I. PROOF OF THE MAIN RESULT

Let us consider the set of stochastic differential equations:

ẋi = −∂xi
Φ + ηi (1)

where i = 1, .., N , ∂xi
= ∂/∂xi and the ηi-s are a set of independent Gaussian stochastic processes with zero mean

〈ηj〉 = 0 and exponential time-correlation:

〈ηi(t)ηj(s)〉 = δij
D

τ
e|t−s|/τ

The Gaussian colored-noise component ηi is necessarily produced by the Ornstein-Uhlenbeck process (Doob’s theo-
rem) [15]:

η̇i = −ηi
τ

+
D1/2

τ
Γi (2)

where the Γi-s are a set of uncorrelated white-noise processes:

〈Γi(s)Γj(t)〉 = 2δijδ(t− s)

with zero average 〈Γi〉 = 0. By combining Eq.s (1) and (2) we find [15, 17]:

ẍi +
∂xi

Φ

τ
+
∑
k

(
δik
τ

+ ∂xixk
Φ

)
ẋk =

D1/2

τ
Γi (3)

The Unified Colored Noise Approximation (UCNA) is done by neglecting the term ẍi in Eq. (4). With this simplifi-
cation we can invert Eq. (4) to obtain

ẋi = −
∑
k

[M−1]ik
∂xk

Φ

τ
+
D1/2

τ

∑
k

[M−1]ikΓk (4)

where we have defined the matrix Mij = δij/τ+∂xixjΦ (which is symmetric by construction being ∂xixk
Φ the Hessian

matrix) and its inverse [M−1]ij .
The Fokker-Planck equation associated with the (Stratonovich) Langevin equation (4) is given by [18]:
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Ω̇ =
∑
l,i

∂xl

{
1

τ
[M−1]li (∂xi

Φ) Ω

}
+
D

τ2

∑
l,i,j

∂xl

{
[M−1]li ∂xj

(
[M−1]ij Ω

)}
(5)

where Ω = Ω(x1, ..., xN ) is the probability density function. The stationary solution with vanishing current is found
from Eq. (5) by setting:

∑
i

[M−1]li (∂xiΦ)Ω +
D

τ

∑
i,j

[M−1]li ∂xj

{
[M−1]jiΩ

}
= 0 (6)

By multiplying Eq. (6) by Mkl and summing over l we get:

− τ
D

(∂xk
Φ)Ω− Ω

∑
j

∂xj
[M−1]jk =

∑
j

[M−1]jk ∂xj
Ω (7)

where we have used the identity
∑
lMkl[M

−1]li = δki. We reiterate this step by multiplying by Mnk and summing
over k both sides of Eq. (7):

−Ω
τ

D

∑
k

Mnk(∂xk
Φ) + Ω

∑
jk

[M−1]jk(∂xj
[M−1]kn) = ∂xn

Ω (8)

Note that the second term on the l.h.s of Eq. (8) changes sign because

∂xj
(
∑
k

[M−1]jkMkn) = ∂xj
(δjn) = 0

that gives

∑
k

[M−1]jk(∂xj
Mkn) = −

∑
k

(∂xj
[M−1]jk)Mkn

The second term on l.h.s of Eq. (8) can be further transformed if we use the identity ∂xj
Mkn = ∂xn

Mkj , which stems

from the fact that Mij contains the 2nd-order derivatives of the potential,:

∑
jk

[M−1]jk(∂xj
[M−1]kn) =

∑
jk

[M−1]jk(∂xn
[M−1]kj) =

1

|M |
∂xn
|M |

where in the last equality |M | is the determinant of the matrixM and we have used the Jacobi’s formula (1/|M |)∂xM =
Tr
(
M−1∂xM

)
[19]. Returning to Eq. (8) we thus have

Ω

(
− τ
D

∑
k

Mnk(∂xk
Φ) +

1

|M |
∂xn
|M |

)
= ∂xn

Ω (9)

which can be integrated and gives, up to a constant multiplicative (normalization) factor :

Ω = exp

[
−Φ

D
− τ

2D

∑
i

(∂xiΦ)2

]
||τM || (10)

where ||M || is the absolute value of the determinant of M . This last equation which coincides with our main result.
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II. HARD REPULSIVE POTENTIAL IN 1d: THE GCN CASE

For d = 1 the formula (10) reduces to the known form [15]

Ω(x) = exp

[
−Φ(x)

D
− τ

2D
|Φ′(x)|2

]
|1 + τΦ′′(x)| (11)

To derive the form taken by Eq. (11) in presence of a steep repulsive potential we consider the fact that, in presence

of such a potential, the Ω(x) strongly peaks around x = x∗ where |Φ′(x∗)| ≈
√
D/τ . This is intuitive since, at the

point x∗, the GCN root mean-squared velocity
√
〈η2〉 =

√
D/τ is balanced by the external (deterministic) velocity

component and the particle stops. We further assume that the potential is well approximated by an exponential in
the vicinity of x = x∗

Φ ≈ λ
√
D

τ
exp[(x− x∗)/λ] (12)

which consistently gives |Φ′(x∗)| =
√
D/τ . If Ω(x) is peaked around x∗ this must be a maximum which gives the

condition [15]

Φ′′′(x∗) =
Φ′(x∗) (τΦ′′(x∗) + 1)

2

Dτ
(13)

If we use Eq.s (12) and (13) into Eq. (11) and we expand it to second order around x∗ we get

Ω(x) ≈ exp[A+B(x− x∗)2] (14)

where

A = −
λ
√

D
τ

D
+ log

τ
√

D
τ

λ
+ 1

− 1

2

B = −
7λ2τ

√
D
τ + 8Dλτ + 2Dτ2

√
D
τ + 2λ3

2Dλ3τ + 2Dλ2τ2
√

D
τ

whose integral is

∫
Ω(x)dx =

√
2π exp

[
− λ√

Dτ
− 1

2

](√
Dτ + λ

)3/2√ Dτ

7λ2
√
Dτ + 8Dλτ + 2(Dτ)3/2 + 2λ3

(15)

In the limit of λ→ 0 the potential (12) approaches the potential generated by a hard wall located at x∗: Φ(x) =∞
if x > x∗ and Φ(x) = 0 if x < x∗. By taking this limit the integral (15) becomes (note that

√
π/e ≈ 1.07):

∫
Ω(x)dx =

√
πDτ

e
≈
√
Dτ (16)

Let us now consider one single hard wall of thickness 2x∗ centered at x = 0. We also consider one GCN-driven
particle that is free to move around the wall in a 1d space with periodic boundaries located at ±L/2. Using the

result given above in this case Eq. (11) becomes Ω = k(x − x∗) + k(x + x∗) + 1 where k(x − x∗) = 2
√
Dτδ(x − x∗),

since, in the λ → 0 limit, Φ → 0 and Ω → 1 whenever |x| > x∗ and Ω → 0 if |x| < x∗. By integrating Ω we get the

normalization constant
∫ L/2
−L/2 dxΩ(x) = 2

√
Dτ + L∗ and the normalized probability
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P (x) =
k(x− x∗) + k(x+ x∗) + 1

L∗ + 2
√
Dτ

(17)

where L∗ = L − 2x∗. Eq. (17) can be used to compute the quantity 〈|Φ′|〉 if we recall that Φ′(±x∗) = ±
√
D/τ and

Φ′(x) = 0 at any point x 6= ±x∗. By integrating Eq. (17) we get:

〈|Φ′|〉 =

∫ L/2

−L/2
dxP (x)|Φ′(x)| = 2D

L∗ + 2
√
Dτ

(18)

III. HARD REPULSIVE POTENTIAL IN 1d: THE RNT CASE

To show the similarity between the GCN model and “run and tumble” (RnT) model in presece of a hard potential
we consider one single RnT particle moving in 1d. In the RnT dynamics the noise consists in a two-state Poissonian
process happening at rate λ [15]. The RnT noise (also known as “telegraphic” noise) is exponentially correlated
in time as the GNC, but bimodally distributed switching between two velocities only: η = ±v. The speed v and
the characteristic time τ = (2λ)−1 define the diffusivity D = v2τ of the RnT particle in absence of any external
potential [6, 11]. We consider the continuity equations that can be written for the RnT model [5]:

L̇(x) = −∂x {L(x)[−v − Φ′(x)]} − λ

2
L(x) +

λ

2
R(x) (19)

Ṙ(x) = −∂x {R(x)[v − Φ′(x)]} − λ

2
R(x) +

λ

2
L(x) (20)

where L(x) and R(x) is the fraction of particles with a random velocity component pointing to the left (η = −v)
and to the right (η = v) respectively. Let us now consider a hard wall as above extending between −x∗ and x∗ with
periodic boundaries at ±L/2. We consider a stationary solution of Eq.s (19) and (20) of the form

L(x) = 2Aδ(x− x∗) +B/2 (21)

R(x) = 2Aδ(x+ x∗) +B/2 (22)

where the constant A represents the fraction of particles going to the left accumulating on the wall at x∗ that is equal
to the fraction of particles going to the right accumulating on the wall at −x∗. The constant B in Eq.s (21),(22)
represents the fraction of particles that are not in contact with the walls independently on the sign of their velocity.
We now focus only on those particle going to the left in the neighbourhood of x∗ (the same conclusions are obtained

if we consider those going to the right and −x∗). Considering the stationary case L̇ = 0 we integrate Eq. (19) it
between x∗ and x∗ + ε:

−{L(x∗ + ε)[−v + Φ′(x∗ + ε)]− L(x∗)[−v + Φ′(x∗)]} − λ

2

∫ x∗+ε

x∗
dxL(x) +

λ

2

∫ x∗+ε

x∗
dxR(x) = 0 (23)

If we use Eq.s (21),(22) in Eq. (23) we get

−Aλ− [Φ′(0)− Φ′(ε)]B/2 = −Aλ+ vB/2 = 0 (24)

where we have used the fact that Φ′(x∗) = −v. Eq. (24) must be supplemented with the normalization condition

∫ L/2

−L/2
dx [L(x) +R(x)] = 2A+BL∗ = 1 (25)

where P (x) = L(x) + R(x) is the overall probability density and L∗ = L − x∗. Using Eq.s (24) and (25) we find
B = λ/(v + λL∗) and A = v/[2(v + λL∗)] that when expressed as a function of τ and D becomes
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A =

√
Dτ

L∗ + 2
√
Dτ

(26)

B =
1

L∗ + 2
√
Dτ

(27)

Using Eq.s (26) and (27) we have

P (x) = L(x) +R(x) =
k(x− x∗) + k(x+ x∗) + 1

L∗ + 2
√
Dτ

(28)

(with k(x) = 2
√
Dτδ(x)), which is identical to Eq. (17).

IV. RADIALLY SYMMETRIC HARD POTENTIAL

Let us consider the case of a spherically symmetric potential for which Eq. (10) becomes

Ω(r) = Θ exp

[
−Φ(r)

D
− τ

2D
|Φ′(r)|2

]
|1 + τΦ′′(r)||r + τΦ′(r)|d−1 (29)

where Θ is the solid angle in d-dimensions. Let us consider the case d = 2 ( r =
√
x2 + y2, Θ = 2π) and a hard

potential that is Φ(r) = 0 for r < R∗ and Φ(r) = 0 for r > R∗. Let us consider one GCN-driven particle that is
confined by this circular infinite-well where we expect that Ω(r) peaks strongly in correspondence of r = R∗. We
note that Eq. (29) is identical to Eq. (11) multiplied by the term 2π|r+ τΦ′(r)| when d = 2. We further assume that
multiplying Eq. (11) by 2π|r + τΦ′(r)| does not change too much the shape of the peak given by the terms

exp

[
−Φ

D
− τ

2D
|Φ′|2

]
|1 + τΦ′′| ≈ k(r −R∗) + 1

where k(r) = 2
√
Dτδ(r). In this way we have that

Ω(r) ≈ 2π[k(r −R∗) + 1]|r + τΦ′(r)| (30)

where Φ′(R∗) =
√
D/τ and Φ′(r) = 0 for r < R∗. The integral of Ω(r) (normalization constant) is computed

by noting that, for r < R∗, Ω(r) = 2πr so that
∫
r<R∗ drΩ(r) = πR∗2, while in the neighbourhood of R∗ we get∫

r≈R∗ drΩ(r) = 2π
√
Dτ(R∗ +

√
Dτ). Using these results we have from Eq. (30)

P (r) =
2π[k(r −R∗) + 1]|r + τΦ′(r)|
πR∗2 + 2π

√
Dτ(R∗ +

√
Dτ)

(31)

From Eq. (31) we can compute:

〈|Φ′|〉 =

∫ R∗

0

drP (r)|Φ′(r)| = 2D(R∗ +
√
Dτ)

R∗2 + 2Dτ + 2R∗
√
Dτ

(32)

V. COMPARISON OF THE GCN MODEL WITH THE RNT MODEL

We briefly illustrate here how the “run and tumble” (RnT) model compares with the GCN model. The numerical
results of the RnT model are compared with the theoretical results obtained by the MUCNASP showing quite
unexpected analogies.
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(a) (b)

(c) (d)

GCN model RnT model

(a) (b)

(c) (d)

FIG. 1: (LEFT) GCN model (a) Probability density function of the position of one GCN-driven particle in presence of the
external potential Φ = x−12 (shaded area). Full lines: simulations results, dashed lines: theory, dashed-dotted line: Boltzmann
distribution. The more peaked curve corresponds to D = 100µm2/s, τ = 1 s and the less peaked one to D = 0.4µm2/s,
τ = 0.1 s (zoomed in the inset) (b) Average value of |Φ′| as a function of D for three different values of τ = 0.1, 0.325, 1 s from
top to bottom respectively. Points: simulations results, full lines: theory, dashed lines: theory in the limit of an hard potential,
dashed dotted line: equilibrium case with a hard potential. (c) Probability density function of the distance between two
GCN-driven particles interacting via the potential Φ = ∆x−12, same legend as Fig. (a). (d) Average value of |Φ′| as a function
of D for three different values of τ = 0.1, 0.325, 1 s from top to bottom respectively, same legend as as Fig. (b). (RIGHT) (a)
RnT model Probability density function of the position of one RnT particle in presence of the external potential Φ = x−12.
Full lines: simulations results, dashed lines: exact theory for the RnT (Eq. (33)). The more peaked curve corresponds to
D = 100µm2/s, τ = 1 s and the less peaked one to D = 0.4µm2/s, τ = 0.1 s (b) Average value of |Φ′| as a function of D
for three different values of τ = 0.1, 0.325, 1 s from top to bottom respectively. Points: simulations results, full lines: theory
(MUCNA), dashed lines: theory in the limit of an hard potential. (c) Probability density function of the distance between two
RnT particles interacting via the potential Φ = ∆x−12, same legend as Fig. (a). (d) Average value of |Φ′| as a function of D
for three different values of τ = 0.1, 0.325, 1 s from top to bottom respectively, same legend as as Fig. (b).

A. One degree of freedom

Let us start by the case in which one single particle moves in a 1d space of extension L (periodic boundaries are
located at ±L/2) in presence of the external potential Φ = x−12. In this case the probability distribution of the GCN
driven particle peaks in correspondence of x∗ ≈ 1 as shown in Fig. 1(a)(left). This is true also for the RnT model as
see Fig. 1(a)(right) where a log-scale has been used for clarity. Note that in this simple case, with one single degree
of freedom, the exact P (x) is know for the RnT model [6, 11, 15]:

P (x) =
A

D − τ |Φ′(x)|2
exp

[∫ x

dy
Φ′(y)

D − τ |Φ′(y)|2

]
(33)

where A is a normalization constant that absorbs the lower integration limit. Eq. (33) is plotted in Fig. 1(a)(right)
as dashed line and it overlaps perfectly the numerical P (x).

The average value of the absolute external velocity component 〈|Φ′|〉 can be computed for the GCN case by using
the UCNA (Eq. (11)) and is shown as full lines in Fig. 1(b)(left). However we find that this theoretical prediction for
the GCN approximates well also the results of the RnT model as shown in Fig. 1(b)(right). This is somehow expected
since the expression of the P (x) is almost identical in the two models in the limit of a infinitely steep potential (see
Eq.s (17) and (28)) represented by the dashed lines in Fig. 1(b)(left and right).
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(a) (b) (a) (b)

GCN model RnT model

FIG. 2: (LEFT) GCN model (a) Probability density function of the radial coordinate of one GCN-driven particle in presence
of the spherically symmetric external potential Φ = (r − R)−12 in 2d (shaded area). Full lines: simulations results, dashed
lines: theory, dashed-dotted line: Boltzmann distribution. The more peaked curve corresponds to D = 100µm2/s, τ = 1 s and
the less peaked one to D = 0.4µm2/s, τ = 0.1 s (zoomed in the inset) (b) Average value of |Φ′| as a function of D for three
different values of τ = 0.1, 0.325, 1 s from top to bottom respectively. Points: simulations results, full lines: theory, dashed lines:
theory in the limit of an hard potential, dashed dotted line: equilibrium case with a hard potential. (RIGHT) RnT model
(a) Probability density function of the radial coordinate of one RnT particle in presence of the spherically symmetric external
potential Φ = (r − R)−12 in 2d. Full lines: simulations results, dashed lines: theory. The more peaked curve corresponds to
D = 100µm2/s, τ = 1 s and the less peaked one to D = 0.4µm2/s, τ = 0.1 s (b) Average value of |Φ′| as a function of D
for three different values of τ = 0.1, 0.325, 1 s from top to bottom respectively. Points: simulations results, full lines: theory
(MUCNASP), dashed lines: theory in the limit of an hard potential.

B. Two particles in 1d

We now consider two particles with coordinates x1 and x2 moving in 1d interacting via the pair potential Φ(∆x) =
(x1−x2)−12 with periodic boundaries at ±L/2. In this case the GCN-driven particles are frequently found in contact
leading to the a very peaked P (∆x) which is well described by the MUCNASP:

Ω(∆x) = exp

[
−Φ(∆x)

D
− 2τ

2D
|Φ′(∆x)|2

]
|1 + 2τΦ′′(∆x)| (34)

as shown in Fig. 1(c)(left). Eq. (34) allows also to compute the average 〈|Φ′|〉 that is compared with simulation results
in Fig. 1(d)(left). Data compare well also with the case of a hard potential obtained by setting τ → 2τ in Eq. (18)
(dashed lines in Fig. 1(d)(left))

Two RnT particles interacting via the same potential show a more complicated P (∆x) that can be obtained
numerically but not analytically. This is reported in Fig. 1(c)(right) where P (∆x) show a clear secondary peak. This
is qualitatively understood as follows: initially the two particle collide with opposite velocities giving rise to the peak
at contact, subsequently one of the particles tumble and accelerate for a short distance (being pushed away by the
potential Φ = ∆x−12), when this becomes negligible the particle has moved at the distance where the 2nd peak is
found: in this configuration two particles proceed together in the same direction. We note however that, despite the
complicate form of the P (∆x), the value of 〈|Φ′|〉 obtained numerically for the RnT model is well approximated by the
MUCNASP as shown in Fig. 1(d)(right). This is surprising since the P (∆x) of the two models have a quite different
form.

C. Radially symmetric potential

We consider one particle confined in a 2d circular potential well of the form Φ(r) = (r−R)−12 where r =
√
x2 + y2

and R = 5µm. The probability density of the GCN-driven particle peaks strongly at R∗ ≈ R − 1 and this is well
captured by the MUCNASP (Eq. (29)) as shown in Fig. 2(a)(left). Also the value of the radial external velocity
component 〈|Φ′|〉 obtained numerically is well described by the theory (full lines in Fig. 2(b)(left)) and it is close to
the hard potential case given by Eq. (32) (dashed lines in Fig. 2(b)(left)).

Generalizing the RnT model in 2d we assume that the particle moves at constant speed v and the tumble randomizes
completely the swimming direction (see Ref. [27]). The tumble is a Poisson process happening at rate τ−1 and the
axial diffusion coefficient is D = v2τ/2 in absence of an external potential. The P (r) of RnT particles interacting with
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the potential Φ(r) = (r −R)−12 is shown in Fig. 2(a)(right) where we can see how the particles accumulate onto the
repulsive portion of the potential. This P (r) cannot be predicted theoretically and it is quite different from the P (r)
of the GCN-driven particles (see Fig. 2(a)(left)). From the numerical simulations we obtain the quantity 〈|Φ′|〉 that
is reported in Fig. 2(b)(right). Again, quite unexpectedly, the values of 〈|Φ′|〉 are close to those found theoretically
by the MUCNASP (full lines in Fig. 2(b)(right)) and by the same theory in the hard potential limit (dashed lines in
Fig. 2(b)(right)).
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