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SUPPLEMENTAL METHODS 

Additional simulations comparing the pooled and traditional association methods 

We ran additional simulations that model different distributions of read depth across individuals 

and across the genome.  First, we simulated pooled reads by sampling the number of reads from a 

Poisson distribution with λ = total number of reads (the Poisson distribution assumes that the mean and 

the variance of the number of reads are equal).  For the traditional non-ASM method, we randomly 

distributed the number of reads that we sampled across individuals as we did in the previous 

simulations and then sampled allele/methylation status pairs with replacement for each read from the 

read’s individual. 

 Since sequencing data are known to be over-dispersed, the number of reads is often modeled as 

being sampled from a negative binomial instead of Poisson distribution (Anders and Huber 2010).  We 

therefore also sampled the number of reads from a negative binomial distribution.  We fit negative 

binomial parameters to the numbers of reads covering CpGs by finding maximum likelihood values.  

After sampling a number of reads from the negative binomial distribution, we scaled the number of 

reads to 
(𝑁𝑢𝑚.𝑅𝑒𝑎𝑑𝑠 𝑎𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)∗(𝑁𝑢𝑚.𝑅𝑒𝑎𝑑𝑠 𝑖𝑛 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)

𝑀𝑒𝑎𝑛 𝑁𝑢𝑚.𝑅𝑒𝑎𝑑𝑠 𝐴𝑐𝑟𝑜𝑠𝑠 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠
 before sampling.  For the traditional non-ASM 

method, we randomly distributed the post-scaling number of reads that we sampled across individuals 

as we did in the previous simulations and then sampled allele, methylation status pairs with 

replacement for each read from the read’s individual. 

 In addition to evaluating the power of each method, we also compared its false positive rate to 

its true positive rate.  We simulated false positives by creating a distribution of reads with the same MAF 

and MMF as our real distribution but 0.0 correlation between allele and methylation status and 

sampling reads from that distribution.  We ran our true positive and false positive simulations at p-value 
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cutoffs 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, and 0.00001.  We did this for all of our 

Fisher’s exact test negative binomial simulations with 100 individuals and all combinations of numbers 

of reads, effect sizes, MAFs, and MMFs.  We generated ROC curves to illustrate our results. 

 

Details of data processing 

We trimmed reads using Trim Galore! version 0.2.8 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/).  We used the default parameters 

with the exception of --stringency 4, --quality 35, and --paired.  These parameter adjustments prevented 

us from removing ends of reads where only a few bases overlap with the adapter, removed read ends 

that were not especially high-quality, and forced Trim Galore! to account for our reads being paired-end.  

We chose these parameters after trying multiple parameter settings on a subset of our data because 

they enabled the most reads to map uniquely to the genome.  Next, we converted all HapMap Phase II 

(Frazer et al. 2007) and 1000 Genomes Phase I Integrated Version 3 (The 1000 Genomes Project 

Consortium 2010) single nucleotide polymorphisms (SNPs) with MAF > 0.04 in human genome version 

hg19 (The International Human Genome Sequencing Consortium 2001) into N’s in order to eliminate 

sources of reference bias when mapping (Degner et al. 2009).  We mapped reads to the autosomes in 

hg19 (The International Human Genome Sequencing Consortium 2001) using Bismark version 0.12.3 

(Krueger and Andrews 2011) with Bowtie 2 version 2.2.3 (Langmead and Salzberg 2012).  Bismark 

converts all Cs to Ts and all Gs to As before mapping, maps them to both a C-to-T and a G-to-A-

converted genome, and then converts the Ts and As back to their original bases (Krueger and Andrews 

2011). We used the default parameters with the exception of, for mapping, --bowtie2 and, for extracting 

methylation, --ignore_r2 7, -p, and --no_overlap so that we could remove incorrect methylation calls at 

the 5’ end of read 2 due to DNA repair (Supplemental Figure 27), account for our reads being paired-
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end, and not double-count cytosines on both ends of the reads.  In addition, when calling methylation 

statuses, we removed the 11 bases at the 3’ end of read one and the 31 bases at the 3’ end of read two 

because we noticed substantial methylation degradation towards the 3’ end that seemed independent 

of read sequence (Supplemental Figure 27).  We also used Bismark (Krueger and Andrews 2011) to map 

reads to the lambda phage genome (Leinonen et al. 2011) and to evaluate the observed methylation; 

since lambda phage is completely unmethylated, any observed methylation is due to failure in bisulfite 

treatment or sequencing errors. 

 We also filtered the reads in multiple ways.  Bismark divides all cytosines into four categories: 

cytosines followed by guanines (CpGs), cytosines followed by non-guanines followed by guanines 

(CHGs), cytosines followed by at least two non-guanines (CHHs), and cytosines followed by Ns (CNs).  For 

our analysis, we focused on CpGs.  The CpGs with called methylation statuses should not contain most 

SNPs because we masked SNPs with Ns, so such CpGs would have become CNs.  After running Bismark, 

we removed duplicates from the mapped reads using rmdup from Samtools version 0.1.19 (Li et al. 

2009).  We also removed reads that overlapped with regions in the ENCODE black list (The ENCODE 

Project Consortium 2012).  Thus, we were left with reliable mapped reads and methylation calls. 

After removing duplicates, we determined the allele of each SNP, insertion, and deletion from 

1000 Genomes AFR in each read (The 1000 Genomes Project Consortium, 2010).  We used only the 1000 

Genomes AFR variants because calling variants from pooled data is a challenging problem (Nielsen et al. 

2011; Li 2014), and this panel should contain most of the variants in these individuals (The 1000 

Genomes Project Consortium, 2010); however, when genomic variant positions are not available, they 

can also be inferred from the reads using established methods like GATK (McKenna et al. 2010) or Bis-

SNP (Liu et al. 2012).  When identifying alleles from reads, we did not include any cytosine/thymine 

(C/T) SNPs or adenine/guanine (A/G) SNPs.  During the bisulfite treatment, unmethylated cytosines are 
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converted into uracils (that become thymines during PCR) and, as a result, the guanines that 

complement them become adenines during PCR.  Therefore, for C/T SNPs, we cannot distinguish 

between unmethylated cytosines and thymines from the original reads, and for A/G SNPs on the reverse 

strand, we cannot distinguish between adenines that complement unmethylated cytosines (that have 

become thymines) and adenines from the original reads. 

 

Estimating the fraction of each individual in the pool 

 Although unnecessary for our method, we evaluated how well our pool represented each 

individual by using our reads to estimate the frequency of each individual in our pool.  In order to do 

this, we first computed the number of reads covering each allele of each SNP from HapMap Phase II 

(Frazer et al. 2007).  We then solved the constrained optimization problem 

argmin𝑓

1

2
(𝑋𝑓 − 𝑦)2 

subject to 

𝑓 ≥ 0 

∑ 𝑓𝑗  = 1,

60

𝑗

 

where 𝑦 is the weighted vector of alternate allele frequencies in the pool, 𝑓 is the vector of individual 

frequencies in the pool, 𝑓𝑗 is the entry in the vector 𝑓 for individual 𝑗, and 𝑋 is a weighted (number of 

variants) x (number of individuals) matrix of genotypes (on a 0 to 1 scale, where 0 is homozygous 

reference allele, 0.5 is heterozygous, and 1 is homozygous alternate allele) of each individual for each 

SNP.  We weighted 𝑦 and 𝑋 by multiplying them by the number of reads at the current SNP and then 
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dividing them by the sum of the numbers of reads across all SNPs; this allows SNPs with more reads to 

contribute more to the optimization.  We solved the optimization problem using Matlab’s lsqlin 

(Coleman and Li 1996) with initial individual frequencies of 1/60.  We should note that this does require 

genotype information, which may not always be available for pooled samples, but the results from this 

are not necessary for our pooling method. 

 

Obtaining data for overlaps between mQTLs, eQTLs, dsQTLs, CTCF-binding-QTLs, and GWAS hits 

For eQTLs from Pickrell et al., we downloaded the final_eqtl_list, and final_sqtl_list files from 

eqtl.uchicago.edu/RNA_Seq_data/results (Pickrell et al. 2010).  For eQTLs from the Geuvadis 

Consortium, a larger, more recent study, we downloaded the YRI89 files from 

ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/GEUV/E-GEUV-1/analysis_results; for 

SNPs that were tested for eQTLs in Geuvadis YRI, we downloaded data from 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502 (Lappalainen et al. 2013).  For dsQTLs, we 

downloaded the files from eqtl.uchicago.edu/dsQTL_data/QTLs; for SNPs that were tested for dsQTLs, 

we downloaded data from http://eqtl.uchicago.edu/dsQTL_data/GENOTYPES (Degner et al. 2012).  We 

then used liftOver (Kent et al. 2002) to convert the SNP coordinates from hg18 to hg19 and finally 

combined short-range and long-range dsQTLs.  For CTCF-binding-QTLs and SNPs that were tested for 

CTCF-binding-QTLs, we downloaded data from http://www.ebi.ac.uk/birney-srv/CTCF-QTL (Ding et al. 

2014).  For the GWAS data, we downloaded the GWAS Catalog (Welter et al. 2014) on January 14, 2014.  

For all QTL and GWAS datasets except for the CTCF-binding-QTLs, we used SNAP Proxy Search (Johnson 

et al. 2008) with the YRI population panel and the default distance limit to identify 1000 Genomes Pilot 1 

YRI SNPs in perfect LD and 𝑟2 ≥ 0.8 LD with the SNPs in the dataset and used liftOver (Kent et al. 2002) 

to convert SNP coordinates from hg18 to hg19.  For the CTCF-binding-QTLs, we used the same 

http://www.ebi.ac.uk/birney-srv/CTCF-QTL
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procedure for finding SNPs in LD as was used in the other studies except that we used SNAP’s CEU 

population panel (Johnson et al. 2008) because this study was done in individuals with European 

ancestry; we used this study even though it came from a different population because it is the only 

existing CTCF-binding-QTL study. 

 

Obtaining mQTLs from the Zhang et al. data 

 We compared our mQTLs to those in the Zhang et al. study because it is one of the two largest 

CpG microarray studies of Yoruban LCLs (Zhang et al. 2014).  We obtained a list of filtered CpGs from the 

authors, where the filtering included all of the metrics described in their paper.  We downloaded their 

Supplemental Table 2, which has their YRI mQTLs.  We computed the p-value for the overlap between 

CpGs with mQTLs in both studies using a hypergeometric test, where the background was all CpGs 

tested in both studies. 

 

Obtaining mQTLs from the Banovich et al. data 

 We also compared our mQTLs to those in the Banovich et al. study because it is the other of the 

two largest CpG microarray studies of Yoruban LCLs (Banovich et al. 2014).  We obtained a list of filtered 

CpGs from the authors, where the filtering included all of the metrics described in their paper.  We 

downloaded their mQTLs from http://giladlab.uchicago.edu/data/meQTL_summary_table.txt (Banovich 

et al. 2014).  We computed the p-value for the overlap between CpGs with mQTLs in both studies using 

a hypergeometric test, where the background was all CpGs tested in both studies.  We also intersected 

their CpGs with mQTLs with those found by Zhang et al. (Zhang et al. 2014) to compare the results of 

these two earlier studies. 
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Overlapping CpGs in our study with CpG islands and surrounding regions 

 We determined the fraction of CpGs with mQTLs in our data-set that are also in CpG islands or 

shores.  We did this by downloading CpG islands from http://rafalab.jhsph.edu/CGI/model-based-cpg-

islands-hg19.txt (Irizarry et al. 2009; Wu et al. 2010).  Because CpG shores are generally defined as the 2 

kb surrounding CpG islands in each direction (Price et al. 2013), we extended each CpG island by 2 kb in 

each direction using BEDTools slopBed version 2.16.1 (Quinlan and Hall 2010).  We then identified the 

number of CpGs with mQTLs that are in both the CpG islands and the extended CpG islands.  
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Supplemental Figure 1: Pooled ASM vs. traditional non-ASM method, zero-variance simulations 

Plots showing the correlation of the allele and methylation status versus the fraction of simulations that 

identify the mQTL with p-value < 0.001 for 40, 160, and 640 reads.  In the simulations for this figure, the 

reads are randomly sampled with replacement from the pool/individuals, meaning that, for each read, 

we select an allele-methylation status combination from the distribution of combinations in our pool/for 

the individual.  There are 100 individuals, and there are 0.1 minor allele and minor methylation status 

frequencies.  The reads from the pool are randomly distributed across the individuals, so that each 

individual has approximately (but not exactly) the same number of reads. 

 

Supplemental Figure 2: Pooled ASM vs. traditional non-ASM method, Poisson distribution simulations 

Plots showing the correlation of the allele and methylation status versus the fraction of simulations that 

identify the mQTL with p-value < 0.001 for 40, 160, and 640 reads.  In the simulations for this figure, 

reads are sampled from a Poisson distribution, there are 100 individuals, and there are 0.1 minor allele 

and minor methylation status frequencies. 

 

Supplemental Figure 3: Pooled ASM vs. traditional non-ASM method, F-test p-value simulations 

Plots showing the correlation of the allele and methylation status versus the fraction of simulations that 

identify the mQTL with p-value < 0.001 for 40, 160, and 640 reads.  In the simulations for this figure, 

reads are sampled from a negative binomial distribution, there are 100 individuals, and there are 0.1 

minor allele and minor methylation status frequencies.  p-values for mQTLs were calculated using the p-

value from the F-test for the regression that predicts methylation status as a function of allele/genotype 

instead of Fisher’s Exact Test. 

 

Supplemental Figure 4: Pooled ASM vs. traditional non-ASM method, correlation p-value simulations 

Plots showing the correlation of the allele and methylation status versus the fraction of simulations that 

identify the mQTL with p-value < 0.001 for 40, 160, and 640 reads.  In the simulations for this figure, 

reads are sampled from a negative binomial distribution, there are 100 individuals, and there are 0.1 

minor allele and minor methylation status frequencies.  p-values for mQTLs were calculated using the 

asymptotic p-value from the Pearson correlation instead of Fisher’s Exact Test. 

 

Supplemental Figure 5: Pooled ASM vs. traditional non-ASM method, MAF = 0.3 simulations 

Plots showing the correlation of the allele and methylation status versus the fraction of simulations that 

identify the mQTL with p-value < 0.001 for 40, 160, and 640 reads.  In the simulations for this figure, 

reads are sampled from a negative binomial distribution, there are 100 individuals, and there are 0.3 

minor allele and minor methylation status frequencies. 
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Supplemental Figure 6: Pooled ASM vs. traditional non-ASM method, MAF = 0.5 simulations 

Plots showing the correlation of the allele and methylation status versus the fraction of simulations that 

identify the mQTL with p-value < 0.001 for 40, 160, and 640 reads.  In the simulations for this figure, 

reads are sampled from a negative binomial distribution, there are 100 individuals, and there are 0.5 

minor allele and minor methylation status frequencies. 

 

Supplemental Figure 7: Pooled ASM vs. traditional non-ASM method, 25 individuals simulations 

Plots showing the correlation of the allele and methylation status versus the fraction of simulations that 

identify the mQTL with p-value < 0.001 for 40, 160, and 640 reads.  In the simulations for this figure, 

reads are sampled from a negative binomial distribution, there are 25 individuals, and there are 0.1 

minor allele and minor methylation status frequencies.   

 

Supplemental Figure 8: Pooled ASM vs. traditional non-ASM method, 400 individuals simulations 

Plots showing the correlation of the allele and methylation status versus the fraction of simulations that 

identify the mQTL with p-value < 0.001 for 40, 160, and 640 reads.  In the simulations for this figure, 

reads are sampled from a negative binomial distribution, there are 400 individuals, and there are 0.1 

minor allele and minor methylation status frequencies. 

 

Supplemental Figure 9: ROCs for pooled ASM vs. traditional non-ASM method, MAF = 0.1 simulations 

ROC curves comparing the false positive versus true positive rates for simulations for 40, 160, and 640 

reads and effect sizes 1.0 and 0.5.  In the simulations for this figure, reads are sampled from a negative 

binomial distribution, there are 100 individuals, and there are 0.1 minor allele and minor methylation 

status frequencies. 

 

Supplemental Figure 10: ROCs for pooled ASM vs. traditional non-ASM method, F-test simulations 

ROC curves comparing the false positive versus true positive rates for simulations for 40, 160, and 640 

reads and effect sizes 1.0 and 0.5.  In the simulations for this figure, reads are sampled from a negative 

binomial distribution, there are 100 individuals, and there are 0.1 minor allele and minor methylation 

status frequencies.  p-values for mQTLs were calculated using the p-value from the F-test for the 

regression that predicts methylation status as a function of allele/genotype instead of Fisher’s Exact 

Test. 
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Supplemental Figure 11: ROCs for pooled ASM vs. traditional non-ASM method, MAF = 0.3 simulations 

ROC curves comparing the false positive versus true positive rates for simulations for 40, 160, and 640 

reads and effect sizes 1.0 and 0.5.  In the simulations for this figure, reads are sampled from a negative 

binomial distribution, there are 100 individuals, and there are 0.3 minor allele and minor methylation 

status frequencies. 

 

Supplemental Figure 12: ROCs for pooled ASM vs. traditional non-ASM method, MAF = 0.5 simulations 

ROC curves comparing the false positive versus true positive rates for simulations for 40, 160, and 640 

reads and effect sizes 1.0 and 0.5.  In the simulations for this figure, reads are sampled from a negative 

binomial distribution, there are 100 individuals, and there are 0.5 minor allele and minor methylation 

status frequencies. 

 

Supplemental Figure 13: p-Values from pooled ASM vs. traditional non-ASM method simulations 

Histograms of p-values for variant-CpG pairs from 10,000 simulations.  These simulations were done for 

40 reads, perfect correlation between allele and methylation status, 0.1 minor allele and methylation 

status frequencies, and 100 individuals.  The number of reads in each simulation was sampled from a 

negative binomial distribution, and p-values were computed using Fisher’s Exact Test.  a) –log10p-values 

for pooling method.  b) –log10p-values for traditional method. 

 

Supplemental Figure 14: Estimated fraction of each individual’s DNA in the pool 

 

Supplemental Figure 15: Distances between variants and corresponding CpGs for mQTLs 

 

Supplemental Figure 16: Pyrosequencing validation of an mQTL that is in strong LD with a GWAS hit 

Shown is an mQTL involving a SNP in 0.80 LD with a SNP previously associated with basal cell carcinoma 

that was validated in a different set of 30 LCLs.  a) Pooled bisulfite sequencing for the mQTL showing 

strong association.  b) Pyrosequencing validation of the mQTL in 30 additional YRI individuals did not 

confirm our findings.  Light blue points are the methylation percentages from individuals, and crosses 

are the mean methylation percentages for individuals of each genotype. 

 

Supplemental Figure 17: Pyrosequencing validation of an mQTL that is a dsQTL 
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Shown is an mQTL involving a SNP previously associated with open chromatin that was validated in a 

different set of 30 LCLs.  a) Pooled bisulfite sequencing for the mQTL, showing strong association.  b) 

Pyrosequencing validation of the mQTL in 30 additional YRI individuals shows that the mQTL is not 

limited to the individuals in our study.  Light blue points are the methylation percentages from 

individuals, and crosses are the mean methylation percentages for individuals of each genotype. 

 

Supplemental Figure 18: Pyrosequencing validation of an mQTL that is in strong LD with a GWAS hit 

Shown is an mQTL involving a SNP in 0.84 LD with a SNP previously associated with hypertension risk in 

short sleep duration that was validated in a different set of 30 LCLs.  a) Pooled bisulfite sequencing for 

the mQTL, showing strong association.  b) Pyrosequencing validation of the mQTL in 30 additional YRI 

individuals shows that the mQTL is not limited to the individuals in our study.  Light blue points are the 

methylation percentages from individuals, and crosses are the mean methylation percentages for 

individuals of each genotype. 

 

Supplemental Figure 19: Pyrosequencing validation of an mQTL that is in perfect LD with a GWAS hit 

Shown is an mQTL involving a SNP in perfect LD with a SNP previously associated with venous 

thromboembolism that was validated in a different set of 30 LCLs.  a) Pooled bisulfite sequencing for the 

mQTL, showing strong association.  b) Pyrosequencing validation of the mQTL in 30 additional YRI 

individuals shows that the mQTL is not limited to the individuals in our study.  Light blue points are the 

methylation percentages from individuals, and crosses are the mean methylation percentages for 

individuals of each genotype. 

 

Supplemental Figure 20: Pyrosequencing validation of an mQTL that is in strong LD with a GWAS hit 

Shown is an mQTL involving a SNP in 0.86 LD with a SNP previously associated with prostate cancer that 

was validated in a different set of 30 LCLs.  a) Pooled bisulfite sequencing for the mQTL, showing strong 

association.  b) Pyrosequencing validation of the mQTL in 30 additional YRI individuals shows that the 

mQTL is not limited to the individuals in our study.  Light blue points are the methylation percentages 

from individuals, and crosses are the mean methylation percentages for individuals of each genotype. 

 

Supplemental Figure 21: Pyrosequencing validation of an mQTL that is an exon-level eQTL 

Shown is an mQTL involving a SNP previously associated with exon-level expression that was validated in 

a different set of 30 LCLs.  a) Pooled bisulfite sequencing for the mQTL, showing strong association.  b) 

Pyrosequencing validation of the mQTL in 30 additional YRI individuals shows that the mQTL is not 

limited to the individuals in our study.  Light blue points are the methylation percentages from 

individuals, and crosses are the mean methylation percentages for individuals of each genotype. 
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Supplemental Figure 22: Numbers of tested CpGs and mQTLs in pooled vs. Zhang et al. dataset 

a) Illustration of the number of CpGs tested for mQTLs in our pooled dataset and in the Zhang et al. 

array data-set.  b) Illustration of the number of CpGs with mQTLs in our pooled dataset and in the Zhang 

et al. array data-set. 

 

Supplemental Figure 23: Numbers of tested CpGs and mQTLs in pooled vs. Banovich et al. dataset 

a) Illustration of the number of CpGs tested for mQTLs in our pooled dataset and in the Banovich et al. 

array data-set.  b) Illustration of the number of CpGs with mQTLs in our pooled data-set and in the 

Banovich et al. array dataset. 

 

Supplemental Figure 24: Fold-enrichments of CpGs with mQTLs in each chromatin state 

Numbers of chromatin states correspond to the numbers listed in Table 1. 

 

Supplemental Figure 25: p-Values for mQTL enrichment in open chromatin from LCLs vs. others 

Histograms of –log10p-values for mQTL enrichment in open chromatin regions from different cell types.  

The histogram for LCLs is in red, and the histogram for all other cell types is in light blue. 

 

Supplemental Figure 26: Fold-enrichments of mQTLs in TF-binding sites 

This bar graph contains the 12 TF-binding sites that are enriched for mQTLs in Supplementary Table 1. 

 

Supplemental Figure 27: Methylation bias that depends on position in read 

M-bias plots generated by Bismark for one library in one sequencing lane of one flowcell.  The dark blue 

line in the plot is the percentage of CpG methylation.  The part of the read underlined by the dark blue 

line was removed during methylation status calling using Bismark’s bismark_methylation_extractor’s 

ignore_r2 option.  The parts of the reads underlined by the dark red lines were removed during 

methylation status calling by in-house scripts.  Other libraries and sequencing lanes and flowcells for this 

library have M-bias plots that look similar to this one. 

 

Supplemental Figure 28: Using LD to combine data from reads with the same CpG 
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Reads for each variant, CpG pair can be used to generate a contingency table, even though the 

individual from which each read was generated is not known.  Reads from the same CpG that have 

different variants that are in perfect LD can be combined, and the alleles of the first variant for reads 

with the second variant can be imputed when making the contingency table.  
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Unmethyl Methyl 

Ref Allele (T) 5 0 

Alt Allele (G) 1 4 

Supplemental Figure 28 
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Histone modification/ 
transcription factor 

Number of mQTLs in GM12878 
region/peak 

p-value for mQTL enrichment 

H2Az 51 1.13 x 10-1 

H3K4me1 92 > 1 

H3K4me2 90 > 1 

H3K4me3 41 > 1 

H3K27ac 71 4.04 x 10-1 

H3K27me3 3 > 1 

H3K36me3 19 > 1 

H3K79me2 44 > 1 

H3K9ac 34 > 1 

H3K9me3 13 > 1 

H4K20me1 2 > 1 

Atf2 15 2.71 x 10-1 

Atf3 0 > 1 

Batf 16 2.55 x 10-2 

Bcl11a 8 7.32 x 10-1 

Bcl3 5 > 1 

Bclaf1 0 > 1 

Bhlhe40 6 > 1 

Brca1 0 > 1 

Cebpb 3 > 1 

c-Fos 0 > 1 

Chd1 1 > 1 

Chd2 5 > 1 

c-Myc 0 > 1 

CoREST 0 > 1 

CTCF 31 2.93 x 10-5 

E2f4 0 > 1 

Ebf1 10 > 1 

Egr1 3 > 1 

Elf1 6 > 1 

Elk1 1 > 1 

Ets1 1 > 1 

Ezh2 0 > 1 

Foxm1 16 4.15 x 10-2 

Gabp 1 > 1 

Gcn5 0 > 1 

Ikzf1 3 > 1 

Irf3 0 > 1 

Irf4 9 4.46 x 10-1 

JunD 0 > 1 

Max 3 > 1 

Maz 4 > 1 

Mef2a 10 1.06 x 10-2 

Mef2c 6 1.23 x 10-1 
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Mta3 5 > 1 

Mxi1 1 > 1 

Nfat 8 > 1 

Nfe2 0 > 1 

Nfic 27 1.82 x 10-4 

Nfkb 7 > 1 

Nfya 0 > 1 

Nfyb 3 > 1 

Nrf1 0 > 1 

NRSF 2 > 1 

p300 7 > 1 

Pax5C 10 > 1 

Pax5N 11 1.90 x 10-1 

Pbx3 0 > 1 

Pml 6 > 1 

Pol2, 4h 9 > 1 

Pol2 9 > 1 

Pol2-S2 1 > 1 

Pol3 0 > 1 

Pou2f2 14 7.56 x 10-4 

PU.1 21 1.09 x 10-3 

Rad21 19 5.87 x 10-4 

Rfx5 0 > 1 

Runx3 37 6.65 x 10-5 

Rxra 0 > 1 

Sin3a 3 > 1 

Six5 2 > 1 

Smc3 18 7.11 x 10-3 

Sp1 6 > 1 

Spt20 71 > 1 

Srf 4 > 1 

Stat1 1 > 1 

Stat3 1 > 1 

Stat5 7 > 1 

Taf1 2 > 1 

Tblr1 4 > 1 

Tbp 4 > 1 

Tcf12 11 2.30 x 10-2 

Tcf3 9 2.81 x 10-1 

Tr4 1 > 1 

Usf1 2 > 1 

Usf2 6 > 1 

Whip 8 > 1 

Yy1 9 > 1 

Zbtb33 1 > 1 

Zeb1 1 > 1 
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Znf143 12 2.57 x 10-3 

Znf274 0 > 1 

Zzz3 0 > 1 

Supplemental Table 1: Enrichment of mQTLs in GM12878 regions/peaks 

All p-values are Bonferroni-corrected.  GM12878 peaks for twelve TFs are enriched for mQTLs; these TFs 

are shown in bold.  The sites for all of these TFs contain at least ten mQTLs. 
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Molecular QTL Number of mQTL 
intersections 

Number of mQTL 
intersections, including 
variants in perfect LD 

Number of mQTL 
intersections, including 

variants in 𝒓𝟐 ≥ 0.8 LD 

eQTL from Pickrell et al. 0 3 5 

sQTL from Pickrell et al. 0 0 0 

Exon-level eQTL from 
GEUVADIS Consortium 

28 28 32 

Gene-level eQTL from 
GEUVADIS Consortium 

5 5 9 

dsQTL from Degner et al. 34 48 74 

CTCF-binding-QTL from 
Ding et al. 

15 18 28 

Supplemental Table 2: Numbers of mQTL intersections with other molecular QTL datasets 

Other QTL data-sets were expanded to incorporate variants at different levels of LD in 1000 Genomes.  

dsQTLs were from the combined list of dsQTLs with both distance cutoffs used in Degner et al. 

 

Molecular QTL Fold enrichment of 
mQTL intersections 

Fold enrichment of 
mQTL intersections, 
including variants in 
perfect LD 

Fold enrichment of mQTL 
intersections, including 

variants in 𝒓𝟐 ≥ 0.8 LD 

eQTL from Pickrell et al. N/A 3.16 1.95 

sQTL from Pickrell et al. N/A 0.00 0.00 

Exon-level eQTL from 
GEUVADIS Consortium 

1.91 1.78 1.68 

Gene-level eQTL from 
GEUVADIS Consortium 

1.58 1.46 2.22 

dsQTL from Degner et al. 10.75 7.27 4.98 

CTCF-binding-QTL from 
Ding et al. 

2.70 2.48 2.41 

Supplemental Table 3: Fold enrichments for mQTL intersections with other molecular QTL datasets 

Fold enrichment is (number of mQTL intersections)/(expected number of mQTL intersections).  Other 

QTL datasets were expanded to incorporate variants at different levels of LD in 1000 Genomes.  dsQTLs 

were from the combined list of dsQTLs with both distance cutoffs used in Degner et al.  N/A indicates 

that no molecular QTLs were tested for having mQTLs. 
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mQTL rsID CpG position GWAS SNP 
rsID 

LD (𝒓𝟐) 
between 
mQTL and 
GWAS SNP 

GWAS trait GWAS 
paper 
PMID(s) 

rs10888935 chr1:56060953 rs10888935 mQTL is 
GWAS SNP 

Inflammatory biomarkers 22228203 

rs10797916 chr1:183838064 rs4651156 1.00 Response to 
antidepressants 

20360315 

rs10737680 chr1:196679457 rs10737680 mQTL is 
GWAS SNP 

Age-related macular 
degeneration 

23455636, 
20385819 

rs801736 chr11:65928440 rs564343 0.81 Obesity (early onset 
extreme) 

23563609 

rs9517668 chr13:99923789 rs7335046 0.80 Basal cell carcinoma 21700618 

rs9806806 chr16:9916205 rs8058295 0.87 Autism spectrum disorder, 
attention deficit-
hyperactivity disorder, 
bipolar disorder, major 
depressive disorder, and 
schizophrenia (combined) 

23453885 

rs617201 chr17:30893145 rs225212 0.84 Hypertension risk in short 
sleep duration 

22322875 

rs1113144 chr18:71774787 rs9945428 1.00 Venous thromboembolism 23509962 

rs885252 chr2:39850639 rs7587205 0.96 Response to angiotensin II 
receptor blocker therapy 
(opposite direction w/ 
diuretic therapy) 

22566498 

rs16826873 chr2:198898223 rs1016883 0.80 Ulcerative colitis 23128233 

rs4809455 chr20:61660749 rs6089829 0.90 Prostate cancer 22219177 

rs4809456 chr20:61660870 rs6089829 0.86 Prostate cancer 22219177 

rs2837821 chr21:42161839 rs2837828 1.00 Neutrophil count 21507922 

rs1904394 chr3:2653208 rs4370013 0.86 Blood pressure 17903302 

rs2673051 chr3:45732458 rs2742417 0.93 Response to 
antidepressant treatment 

22041458 

rs4859682 chr4:77410304 rs4859682 mQTL is 
GWAS SNP 

Glomerular filtration rate 23535967 

rs830885 chr5:52021828 rs830884 1.00 Response to platinum-
based agents 

22020760 

rs2400797 chr5:101781191 rs1502844 0.92 Schizophrenia 19571808 

rs7705033 chr5:122774795 rs7705033 mQTL is 
GWAS SNP 

Visceral adipose 
tissue/subcutaneous 
adipose tissue ratio 

22589738 

rs2504567 chr6:26662913 rs1056667 0.90 Educational attainment 23722424 

rs1405069 chr6:36922682 rs1405069 mQTL is 
GWAS SNP 

Chemerin levels 20237162 

rs71572559 chr6:66905309 rs3857536 0.88 Blood trace element 23720494 

Supplemental Table 4: mQTLs in strong LD with GWAS SNPs 

Five mQTLs are GWAS SNPs, and seventeen others are in LD (𝑟2 ≥ 0.8 in YRI) with GWAS SNPs.  
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Assay CpG position Primer names Primer sequences 

Assay 1 chr1:196679457 HF CpG Assay_1 R1 /5BiodT/AT TTT CTA ACC CTT CAC CCT CCA TAA 

HF CpG Assay_1 F1 AGT GAG TAA AGG ATT TTA TGA TAT TGG 

HF CpG Assay_1 S1 AGG TTT ATA TGT TTA TTG TTT AGT 

Assay 2 chr5:122774795 HF CpG Assay_2 R1 /5BiodT/AT TAC TAC TAC TTA CCA AAA ACT CTT 
AAA C 

HF CpG Assay_2 F1 GGA AAG GAA GTG AGG TAG TAA AA 

HF CpG Assay_2 S1 GAA GTG AGG TAG TAA AAA TAA TA 

Assay 3 chr18:71774787 HF CpG Assay 3 R1* /5BiodT/CA AAA CAA ACC ACT ATC CCA AAA T 

HF CpG Assay 3 F1 TGT TAT GGA GGT TTT GGT TTA ATA G 

HF CpG Assay 3 S1 GGA GGT TTT GGT TTA ATA GA 

Assay 4 chr17:3089145 HF CpG Assay 4 F1* /5BiodT/AG TGT TGG GAT TAT AGA TGT GAG TT 

HF CpG Assay 4 R1 ACC CTC TCC TCA AAC AAA TCT AAA TC 

HF CpG Assay 4 S1 AAA CTA TAT CTA CCT CCC 

Assay 5 chr13:99923889 HF CpG Assay_5 R1* /5BiodT/CA CTA TCC TAT CAA ACC ATT ATA CTA A 

HF CpG Assay_5 F1 TTG AGG GAG AAT TTG ATA ATT TGA GA 

HF CpG Assay_5 S1 AAA AGA ATG GGA AAT AAT GAA 

Assay 6 chr21:30158046 HF CpG Assay 6 R1* /5BiodT/TT CCC ACT TTA ACT CTT ACT TCA ATA 
CTA 

HF CpG Assay 6 F1 GAG TTA GAA ATT TAG GTT GGG TTT AGG 

HF CpG Assay 6 S1 TGT TTA TGT GTA GGG AAT 

Assay 7 chr15:65164853 HF CpG assay_7 R1* /5BiodT/CC TAC CAC CAC CCC TAA CTA ATT TTA 
TAT 

HF CpG assay_7 F1 AGA GGA AAT AGT AGG ATG TAA GTA GA 

HF CpG assay_7 S1 GGA GTT AGA GAT TAG TTT GGT TAA 

Assay 8 chr20:61660870 HF CpG Assay 8 R1* /5BiodT/TT ATC TTT CCT CAT TAA ACC TCT ACT 

HF CpG Assay 8 F1 GTT TTA GTT TTT TAG TTT GGA TTG GAT AA 

HF CpG Assay 8 S1 GTT ATA AGT TTT TTT TGG ATT TAG GG 

Supplemental Table 5: Pyrosequencing primers 

We used these primers for the pyrosequencing validation of mQTLs. 

 


