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1 Random walk to generate gambles for virtual

foraging task

1.1 General idea

We propose that decision making aimed at maintaining homeostasis (i.e., aimed
at avoiding to die from hunger) can be investigated by using gambles that are
derived within the mathematical framework of random walks.

• To maintain homeostasis, a biological agent has to keep its internal energy
resources or energy points x above zero at any (discrete) time point i (with
x, i ∈ N0 ).

• In each trial (i.e., at each new foraging decision), the agent starts (the
random walk) with internal resources x0 at time point i = 0. Within each
trial, the agent passes through n time steps (i.e., �days�).

• At each time step n = 1, the agent's internal resources incur a sure cost−c
(with c ∈ N0 ), which mirrors the consumption of energy (e.g., in terms of
calories).

• To replenish the internal resources, the agent choses a risky foraging option
and probailistically receives its outcomes at each time step n. That is,
within a given time step n = 1 the agent can gain an amount g (with g ∈
N0 ) with probability p. This would, for example, correspond to collecting
berries or to hunting deer, where berries could provide a lower gain (less
calories) but have a higher probability than deer. The probabilities of
�nding berries or hunting down deer could, for example, vary according
to di�erent seasons or environments.

• Alternatively, if the agent does not gain anything, the internal resources
only incur the sure cost−c with probability q (where q = 1− p).

• The gain is assumed to be equal or larger than the cost, otherwise the
agent would not strive for it, therefore g ≥ c.
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This situation represents a random walk starting at x0 with

• a step size of g − c and a probability p of going right and

• a step size of−c and a probability q of going left.

The random walk has a lower absorbing barrier at xb = 0, which mirrors dying
from hunger. Within this framework, gambles can be constructed as a function
of p (and thus q), n, x0, c, and g.

1.2 Assumptions

A number of simpli�cations are made:

1. The agent makes one single decision at the beginning of each trial (e.g.,
the agent decides whether to collect berries or to hunt deer and sticks
to that decision throughout the number of days). That is, the gambles
consist of compound lotteries, which comprise n sequential lotteries.

2. The agent does not deplete the food sources and does not get more pro-
�cient at obtaining food. That is, the probabilities p and q are constant
within each trial.

3. Similarly, cost c and gain g are constant within each round.

4. Costs do not di�er between foraging options. For example, collecting
berries and hunting deer are assumed to have the same costs (in terms of
calories spent).

5. Here, only a lower absorbing barrier is considered. An upper absorbing
barrier (e.g., death due to overeating) is not included.

6. Dying from hunger represents the only threat to homeostasis (e.g., there
are no predators).

7. Only a single variable (the amount of internal energy resources) has to
be kept within a homeostatic range (e.g., there is no need to obtain spe-
ci�c nutrients and no con�icts or opportunity costs with respect to other
activities such as sleep or reproduction).

1.3 Outcome distributions of the random walk

In the following, the probability distributions of random walks will be described.
The description of random walks will increase in complexity until all features
outlined above can be incorporated.

2



1.3.1 Simple random walk starting at zero

A random walk is called simple if steps to the right have the step size +1 and
steps to the left have the step size −1 (i.e., if c = 1 and g = 2; since g − c is
the step size to the right and since−c is the step size to the left). Let's assume
the agent starts the random walk at zero. Let Xn denote the random variable
which indicates the position of the agent after n time steps. Then,

p = P (X1 = 1)

q = 1− p = P (X1 = −1)

Let Wn denote the number of steps to the right within the �rst n steps. Then
Wn has a binomial distribution.

P (Wn = a) =

(
n

a

)
pa qn−a, a ∈ N0.

If there are a steps to the right (+1) and therefore n− a steps to the left (−1)
then

Xn = a(+1) + (n− a)(−1) = 2a− n.

If n is even then Xn is also even and if n is odd then Xn is also odd. Therefore,
if n and x are not either both even or both odd then P (Xn = x) = 0. Put
di�erently, the range of Xn is

Xn = {−n,−n+ 2,−n+ 4, . . . , n− 4, n− 2, n } .

After each number of steps n there are n + 1 possible positions. That is, the
range of Xn contains n+ 1 elements. If the agent has visited a certain position
at a certain time step n, the agent can visit it again at n + 2, n + 4, . . . time
steps. Another way of saying this is that if x and n are both even or odd
P (Xn = x) = 0, otherwise P (Xn = x) = 0. Wn = a if and only if Xn = 2a− n.
Writing x = 2a − n, so that a = n+x

2 and n − a = n−x
2 , the probability

distribution of Xn is

P (Xn = x) =

(
n

n+x
2

)
p

n+x
2 q

n−x
2 .

1.3.2 Simple random walk starting at position x0

Now, let's assume that the agent does not start the random walk at zero but at
x0. Let Xn(x0) denote the random variable which indicates the position of the
agent after n time steps in a simple random walk starting from x0. Then,

p = P (X1 = x1 = x0 + 1)

q = 1− p = P (X1 = x1 = x0 − 1)

and

3



Xn(x0) = a(+1) + (n− a)(−1) + x0 = 2a− n+ x0.

The range of Xn(x0) is

Xn(x0) = {−n+ x0,−n+ x0 + 2,−n+ x0 + 4, ...,

n+ x0 − 4, n+ x0 − 2, n+ x0} .

Writing x = 2a − n + x0, so that a = n+x−x0

2 and n − a = n−x+x0

2 , the
probability distribution of Xn(x0) is

P (Xn(x0) = x) =

(
n

n+x−x0

2

)
p

n+x−x0
2 q

n−x+x0
2 .

1.3.3 Random walk with unequal step sizes

Now, let's assume that step sizes to the right and step sizes to the left can take
values 6= ±1. Steps to the right have the size g − c and steps to the left have
the size −c. Then,

p = P (X1(x0) = x1 = x0 + g − c)

q = 1− p = P (X1(x0) = x1 = x0 − c)

and
Xn(x0) = a(g − c) + (n− a)(−c) + x0 = ag − nc+ x0.

The range of Xn(x0) is

Xn(x0) = {−nc+ x0,−nc+ x0 + g,−n+ x0 + 2g, ...,

(g − c)n+ x0 − 2g, (g − c)n+ x0 − g, (g − c)n+ x0} .

If the agent has visited a certain position at a certain time step n, the agent
can visit it again at n + g, n + 2g, . . . time steps. Writing x = ag − nc + x0,

so that a = nc+x−x0

g and n − a = n(g−c)−x+x0

g , the probability distribution of

Xn(x0) is

P (Xn(x0) = x) =

(
n

nc+x−x0

g

)
p

nc+x−x0
g q

n(g−c)−x+x0
g .

1.3.4 Absorbing barrier at zero

So far the random walk has been unrestricted. That is, it had no (absorbing)
barrier (and thus dying was not possible). In a random walk with an absorbing
barrier at zero xb = 0 the range of Xn(x0) only includes elements ≥ 0. Concep-
tually, if one imagines the random walk as a tree, in which new branches are
added at each time step n, one has to �rst calculate the probability distribution
within the full tree (i.e., without considering the barrier). Then, to calculate
the probability distribution of a random walk with an absorbing barrier at zero,
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all downstream branches starting from visits at zero (or values below zero) have
to be �pruned� (i.e., subtracted) from the full tree, which is given by the corre-
sponding random walk without absorbing barrier.

To calculate the probabilities of starvation, i.e. the probabilities of reaching
zero (or values below zero) within n time steps, one has to perform the following
three steps.

1. Determine all time steps hi when �hits� of the barrier can occur (i.e., time
steps n in which the agent in an unrestricted walk can be at xb = 0; with
h ≤ n; i < n).

2. For all those hits of the barrier hi, calculate the probabilities of the agent
being at xb = 0 for the �rst time.

3. Add up the probabilities of the agent being at xb = 0 for the �rst time at
all time steps hi when hits of the barrier occur.

(Note that for step sizes to the left unequal to 6= −1, analogous calculations
have to be made for all cases in which the agent can be at a position x < 0
without passing through zero. E.g. if c = 2, the random walk can go directly
from +1 to −1. For simplicity these cases are not explicitly described below but
the rationale is the same.)

Hits of the barrier Determine the hits of the barrier hi within n time steps
for all i (i.e., the �rst time that the range of Xn(x0) includes zero). The agent
can visit the barrier xb at h1, h1+g, h1+2g, h1+3g, . . . time steps until hi ≤ n.

Probabilities of hitting the barrier for the �rst time The probability
for the agent in a random walk (starting from x0) to be at xb = 0 for the �rst
time after n steps is de�ned as

fn(x0) = P (Xn(x0) = xb)

and
Xr(x0) 6= xb, 0 < r < n.

To calculate fn(x0), one needs to calculate the probability for the agent in a
random walk (starting from x0) to be at xb = 0 not necessarily for the �rst time

after n steps, which is de�ned as

un(x0) = P (Xn(x0) = xb)

There is no explicit formula for fn(x0) for random walks with unequal step sizes
and an absorbing barrier. But fn(x0) can be found as a function of un(x0). At
the �rst hit of the barrier h1

fh1
(x0) = uh1

(x0)

To �nd the probability of hitting the barrier for the �rst time at h2, let's consider
the example of a simple random walk starting at one (i.e., x0 = 1). The agent
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can hit xb = 0 after 1, 3, 5, . . . time steps (i.e., h1, h1 + g, h1 + 2g, . . . time
steps; and thus h1 = 1, h2 = 1 + g, h3 = 1 + 2g, . . . ). There are two mutually
exclusive ways in which the agent can be at xb = 0 at the second hit of the
barrier h2 = 3.

• First, the agent visits zero for the �rst time at h2 (i.e., at h2 = 3 with
probability fh2

(x0)).

• Second, the agent repeatedly visits zero. That is, the agent visits zero for
the �rst time at h1 (i.e., at h1 = 1 with probability fh1

(x0) = uh1
(x0))

and returns to zero after g = 2 further time steps. That is, the probability
of going from the �rst hit of the barrier h1 to the second hit of the barrier
h2 within g = 2 time steps is ug(xb). Therefore, the probability of having
repeatedly visited zero at h2 is

fh1
(x0)u(xb).

Since the �rst and the second way of reaching zero are mutually exclusive, they
can be added up. Therefore, at the second hit of the barrier h2

uh2
(x0) = fh2

(x0) + fh1
(x0)ug(xb)

and
fh2

(x0) = uh2
(x0)− fh1

(x0)ug(xb).

More generally, there are i mutually exclusive ways in which the agent can hit
the barrier xb = 0 at hi (with probability uhi

(x0)).

• First, the agent visits the barrier xb for the �rst time at time step hi (with
probability fhi

(x0)).

• Second, the agent repeatedly visits the barrier. That is, the agent visits the
barrier for the �rst time at one of the previous time steps hi−1, hi−2, hi−3,
. . . , h1(with probabilities fhi−1

(x0), fhi−2
(x0), fhi−3

(x0), . . . , fh1
(x0) =

uh1
(x0)) and returns to the barrier after g, 2g, 3g, . . . , (i − 1)g further

time steps.

That is, the probabilities of going from the hits of the barrier hi−1, hi−2, hi−3,
. . . , h1 to the hit of the barrier hi are ug(xb), u2g(xb), u3g(xb), . . . , u(i−1)g(xb).

Therefore, the probability of having repeatedly visited the barrier xb = 0
at hi is

fx0,hi−1
u0,g + fx0,hi−2

u0,2g + fx0,hi−3
u0,3g + . . .+ fx0,h1

.

Therefore,

fhi
(x0) = uhi

(x0)− fhi−1
(x0)ug(xb)− fhi−2

(x0)u2g(xb)− . . .− fhi
(x0).

Note that the values of the indices within a product have to add up to hi. Note
also that the range of Xn contains n+ 2− i elements for i = 1 (where i are the
number of hits of the barrier).

6



Adding up probabilities of hitting the barrier for the �rst time To
�nd the probability of having reached the absorbing barrier at xb = 0 within n
time steps (i.e., the probability of starvation pstarve), add up the probabilities
of being at xb = 0 for the �rst time at all possible hits hi of the barrier.

P (Xn(x0) = 0) = fhi(x0) + fhi−1(x0) + . . .+ fh1(x0)

2 Calculating statistical moments

2.1 Expected value

To calculate the �rst statistical moment, i.e., the expected value of a random
walk with an absorbing barrier xb (at zero) at time step n, one has to �rst
calculate the probabilities of all elements P (Xn(x0) = x) within the range of
Xn(x0) and then take the sum of all those probabilities multiplied by their
respective values P (Xn(x0) = x)x.

The rationale is similar as above for �nding the probabilities of hitting the
absorbing barrier. To �nd the probabilities of being at a certain position x in
a random walk with an absorbing barrier (at zero), one has to �rst calculate
the probability distribution within the corresponding full tree (i.e., without
considering the barrier). Then, all downstream branches starting from visits at
zero (or values below zero) have to be �pruned� (i.e., subtracted) from the full
tree. The time steps when the random walk can hit zero hi and the probabilities
when the random walk reaches zero fhi(x0) have already been determined above.

• First, calculate the probability of being in x in the corresponding full tree
without absorbing barrier Pfull. (This probability corresponds to uhi

(x0)
above.)

Pfull(Xn(x0) = x)

• Second, calculate the downstream branches. That is, the probabilities
of going from the barrier xb to x (at all time steps hi when the barrier
was hit). (These probabilities correspond to ug(xb), u2g(xb), u3g(xb), . . . ,
u(i−1)g(xb) above.)

P (Xn−hi
(xb) = x), P (Xn−hi−1

(xb) = x), P (Xn−hi−2
(xb) = x), . . . , P (Xn−h1

(xb) = x)

The probability of being in position x in a tree with an absorbing barrier at
xb = 0 is

Pb(Xn(x0) = x) =Pfull(Xn(x0) = x)− fhi(x0)P (Xn−hi(xb) = x)+

− fhi−1(x0)P (Xn−hi−1(xb) = x)− . . .− fh1(x0)P (Xn−h1(xb) = x).

The expected value (EV ) is the weighted sum over all J elements x1, x2, . . . , xJ

within the range of Xn(x0). The number of elements J is n + 2 − i for i = 1
(where i are the number of hits of the barrier; for i = 0, i.e., no hits of the
barrier, J equals n+ 1).
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EV =

J∑
j=1

P (Xn(x0) = xj)xj

2.2 Variance and skewness

The second and third statistical moments, i.e., variance (V ar) and skewness
(Skw) are calculated as follows

V ar =

J∑
j=1

P (Xn(x0) = xj) (xj − EV )2

Skw =

∑J
j=1 P (Xn(x0) = xj) (xj − EV )3

V ar
3
2
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