Intra-specific variability of cadmium tolerance, accumulation and Cd-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri

Claire-Lise Meyer, Michal Juraniec, Stéphanie Huguet, Elena Chavez-Rodrigues, Piétro Salis, Marie-Pierre Isaure, Erik Goormaghtigh, and Nathalie Verbruggen

Table S1 : Correlations between the mineral concentrations, the concentration of chlorophyll and the shoot dry biomass in the studied *A. halleri* individuals. Upper part, in NC condition (0 μ M CdSO4), n = 52; lower part, in C condition (5 μ M CdSO4), n = 65.

	Cd	Zn	Fe	Mg	Ca	Κ	RCC	DSB
Zn	0.023		0.142	0.455 **	0.420 **	-0.111	0.066	-0.202
Fe	-0.443 ***	-0.118		0.262	0.232	0.366 *	0.115	-0.051
Mg	0.389 **	0.285 *	-0.342 *		0.595 ***	-0.180	-0.019	-0.475 **
Ca	0.413 **	0.433 ***	-0.293	0.601 ***		-0.352 *	0.190	-0.389 *
K	0.209	-0.037	0.312 *	-0.260	-0.170		-0.365 *	0.039
RCC	-0.718 ****	0.102	0.408 ***	-0.295 *	0.141	-0.356 *		0.258
DSB	-0.270	-0.204	0.129	-0.273 *	0.118	-0.118	0.250	

RCC, relative chlorophyll content; DSB, dry shoot biomass; ****, P < 0.0001; ***, P < 0.001; **, P < 0.01; *, P < 0.05.

Figure S1: Dry shoot biomass and relative chlorophyll content in hydroponically growth *A. halleri* NM (blue bars) and M (orange bars) populations and *A. lyrata petraea* (green bars). Plants were cultivated for 3 weeks in control solution (0 μ M CdSO4) or Cd contraminated solution (5 μ M CdSO4). Data are mean \pm SD, *n*= 3 to 16. Letters indicate significant differences at the 5 % level; ns, non significant.

Figure S2: Different phenotypes of *A. halleri* populations and *A. lyrata* ssp *petreae* after 3 weeks exposure to 5 μ M CdSO4. Scale is the same for all pictures.

Figure S3: Mineral concentration (μ g g-1) in hydroponically growth *A. halleri* NM (blue bars) and M (orange bars) populations and *A. lyrata petreae* (green bars) after 3-weeks culture in control solution (0 μ M CdSO4). Data are means ± SD, *n* = 5 to 16. Letters indicate significant differences at the 5% level; ns, non significant.

Figure S4: Mineral concentration (μ g g-1) in hydroponically growth *A. halleri* NM (blue bars) and M (orange bars) populations and *A. lyrata petreae* (green bars) after 3-weeks culture at 5 μ M CdSO4. Data are means \pm SD, n = 4 to 16. Letters indicate significant differences at the 5% level.

Figure S5: A, Mean spectrum obtained at 0 (blue line) and 5 μ M CdSO4 (black line) for *A. lyrata petreae* individuals and spectrum of the difference between these two average spectra (red line). Thicker lines indicates wavenumbers statistically different according to a Student t-test (α =1%). Spectra have been normalized to the same arbitrary area between 1800 and 900 cm⁻¹. Note that spectra have been offset for better readability. B, Plot of the first and second PCs based on the FT-IR spectra obtained from *A. lyrata petreae* individuals grown in NC (blue dots) and C (red dots) conditions. C, Loading factor for PC1 (blue line) and PC2 (green line) explaining PCA clustering. Arrows point the discussed wavenumbers.

Figure S6: A, Mean spectrum obtained at 0 (blue line) and 5 μ M CdSO4 (black line) for *A. halleri* individuals from the NM population I28 and spectrum of the difference between these two average spectra (red line). Thicker lines indicates wavenumbers statistically different according to a Student t-test (α =1%). Spectra have been normalized to the same arbitrary area between 1800 and 900 cm⁻¹. Note that spectra have been offset for better readability. B, Plot of the first and second PCs based on the FT-IR spectra obtained from *A. lyrata petreae* individuals grown in NC (blue dots) and C (red dots) conditions. C, Loading factor for PC1 (blue line) and PC2 (green line) explaining PCA clustering. Arrows point the discussed wavenumbers.

Figure S7: A, Mean spectrum obtained at 0 (blue line) and 5 μ M CdSO4 (black line) for *A. halleri* individuals from the M population AU and spectrum of the difference between these two average spectra (red line). Thicker lines indicates wavenumbers statistically different according to a Student t-test (α =1%). Spectra have been normalized to the same arbitrary area between 1800 and 900 cm⁻¹. Note that spectra have been offset for better readability. B, Plot of the first and second PCs based on the FT-IR spectra obtained from *A. lyrata petreae* individuals grown in NC (blue dots) and C (red dots) conditions. C, Loading factor for PC1 (blue line) and PC2 (green line) explaining PCA clustering. Arrows point the discussed wavenumbers.

Figure S8: A, Mean spectrum obtained at 0 (blue line) and 5 μ M CdSO4 (black line) for *A. halleri* individuals from the M population PL22 and spectrum of the difference between these two average spectra (red line). Thicker lines indicates wavenumbers statistically different according to a Student t-test (α =1%). Spectra have been normalized to the same arbitrary area between 1800 and 900 cm⁻¹. Note that spectra have been offset for better readability. B, Plot of the first and second PCs based on the FT-IR spectra obtained from *A. lyrata petreae* individuals grown in NC (blue dots) and C (red dots) conditions. C, Loading factor for PC1 (blue line) and PC2 (green line) explaining PCA clustering. Arrows point the discussed wavenumbers.

Figure S9: A, Mean spectrum obtained at 0 (blue line) and 5 μ M CdSO4 (black line) for *A. halleri* individuals from the M population I16 and spectrum of the difference between these two average spectra (red line). Thicker lines indicates wavenumbers statistically different according to a Student t-test (α =1%). Spectra have been normalized to the same arbitrary area between 1800 and 900 cm⁻¹. Note that spectra have been offset for better readability. B, Plot of the first and second PCs based on the FT-IR spectra obtained from *A. lyrata petreae* individuals grown in NC (blue dots) and C (red dots) conditions. C, Loading factor for PC1 (blue line) and PC2 (green line) explaining PCA clustering. Arrows point the discussed wavenumbers.