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A Distribution of genotype and phenotype in the different popula-
tions along a full replication cycle

In this section we will derive expressions for the distributions of genotypes g, environment e
and phenotype φ in the populations of carriers C, donors D, recipients R and new carriers E.
The phenotype φ refers here to the log set point virus load (log spVL). The genotype g refers to5

the virus and the environment e refers to all non-transmissible contribution to log spVL, i.e. the
contributions from the host genotype, from the interactions between host and viral genotypes
and from the environment. Generally, px,Y will denote the distribution of x ∈ {g, e, φ} in the
population Y ∈ {C,D,R,E}. The phenotype φ(g, e) is a function of the genotype g and the
environment e. The simplest assumption is that g and e contribute additively,10

φ(g, e) = g + e. (A1)

A.1 Carrier population

Let the joint distribution of genotypes and environments in the carrier population be pge,C(g, e).
Assuming that genotypes and environments are independently distributed we have,

pge,C(g, e) = pg,C(g)pe,C(e). (A2)

The distribution of the phenotype φ in the carrier population is,

pφ,C(φ) =

∫∫
pge,C(g, e|φ)pg,C(g)pe,C(e) dgde (A3)

=

∫∫
δ(φ− (g + e))pg,C(g)pe,C(e) dgde (A4)

=

∫
pg,C(g)pe,C(φ− g) dg (A5)

= [pg,C ∗ pe,C ](φ). (A6)

Here, δ is the Dirac-delta function and the asterisk denotes the convolution of the distributions
pg,C and pe,C .15

A.2 Donor population

Donors are selected from the current distribution of carriers according to their fitness S(φ)
which depends on their phenotype φ = g + e. The joint distribution of g and e in selected
donors is,

pge,D(g, e) =
1

Zs
pge,C(g, e)S(g + e) =

1

Zs
pg,C(g)pe,C(e)S(g + e), (A7)

where Zs is a normalization constant,

Zs =

∫∫
pge,C(g, e)S(g + e)dgde =

∫∫
pg,C(g)pe,C(e)S(g + e)dedg (A8)

=

∫∫
pg,C(g)pe,C(φ− g)S(φ)dφdg (A9)

=

∫
pφ,C(φ)S(φ)dφ. (A10)
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We can then write the joint distribution of genotypes g and phenotypes φ in the selected donors,

pgφ,D(g, φ) =

∫
pge,D(g, e)δ(φ− (g + e))de (A11)

=
1

Zs

∫
pg,C(g)pe,C(e)S(g + e)δ(φ− (g + e))de (A12)

=
1

Zs
pg,C(g)pe,C(φ− g)S(φ). (A13)

The distribution of genotypes irrespective of the phenotype then is pg,D(g, φ) marginalized over20

φ,

pg,D(g) =

∫
pg,D(g, φ)dφ =

1

Zs

∫
pg,C(g)pe,C(φ− g)S(φ)dφ. (A14)

Similarly, the distribution of the phenotype φ in the selected donors is,

pφ,D(φ) =

∫
pg,D(g, φ)dg =

1

Zs

∫
pg,C(g)pe,C(φ− g)S(φ)dg =

1

Zs
[pg,C ∗ pe,C ](φ)S(φ). (A15)

A.3 Recipient population

The distribution of genotypes in the recipient population is shaped by the transmission func-
tion T (gR, gD), which determines the genotype gR of a recipient given that the genotype of the
donor was gD. So the distribution of g in the recipients is T integrated over all genotypes in the
donor population,

pg,R(gR) =

∫
T (gR, gD)pg,D(gD) dgD (A16)

=
1

Zs

∫∫
T (gR, gD)pg,C(gD)pe,C(φ− gD)S(φ) dφ dgD. (A17)

We can write the distribution of phenotype in the recipient population as,

pφ,R(φR) =

∫
pg,R(gR)pe,R(φR − gR)dgR (A18)

=

∫∫
T (gR, gD)pg,D(gD)pe,R(φR − gR)dgDdgR (A19)

=

∫
pg,D(gD)dgD

∫
T (gR, gD)pe,R(φR − gR)dgR (A20)

=

∫
pg,D(gD)[T ∗ pe,R](φR, gD)dgD. (A21)

Inserting equation (A14),

pφ,R(φR) =
1

Zs

∫∫
[T ∗ pe,R](φ, g) pg,C(g)pe,C(φ′ − g)S(φ′) dφ′ dg. (A22)
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A.4 Evolved population (after intrahost evolution)25

Let Eg(gE , gR) be the function that evolves the genotype within the host. The distribution of
genotypes in the evolved recipients is then,

pg,E(gE) =

∫
Eg(gE , gR)pg,R(gR)dgR. (A23)

Inserting equation (A17),

pg,E(gE) =
1

Zs

∫∫∫
Eg(gE , gR)T (gR, gD)pg,C(gD)pe,C(φ− gD)S(φ) dφ dgD dgR. (A24)

Due to the evolution of the virus genetics, the host-virus interactions can change. This would
result in a change in the distribution of e in the evolved population. Let Ee(eE , eR) be the30

function that evolves the interactions within the host. The distribution of environmental factors
in the evolved recipients is then,

pe,E(eE) =

∫
Ee(eE , eR)pe,R(eR)deR. (A25)

We can write the distributions of phenotypes as,

pφ,E(φE) =

∫
pg,E(gE)pe,E(φE − gE) dgE (A26)

=
1

Zs

∫
· · ·
∫
Eg(gE , gR)T (gR, gD)pg,C(gD)pe,C(φ− gD)S(φ)

× Ee(φE − gE , eR)pe,R(eR) deR dφ dgD dgR dgE (A27)

=
1

Zs

∫∫∫
T (gR, gD)pg,C(gD)pe,C(φ− gD)S(φ) dφ dgD dgR

×
∫

[Eg ∗ Ee] (φE ; gR, eR)pe,R(eR) deR. (A28)

B Analytical solution assuming normal distributions

While the above expressions hold for any distribution, the integral cannot be solved in the
general case. If we assume normal distributions for all the different processes, we are able to35

derive closed-form expressions.

B.1 Carriers

We assume that the distributions pg,C and pe,C are normally distributed,

pg,C =
1√
2πvC

exp

{
−(mC − g)2

2vC

}
, (B1)

pe,C =
1√
2πνe

exp

{
−(µe − e)2

2νe

}
. (B2)

Here, (mC , vC) and (µe, νe) are the means and variances of the genotype and environmental
distributions respectively.
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Since the convolution of two Gaussian distributions with means µ1 and µ2 and variances σ2
140

and σ2
2 is also a Gaussian with mean µ12 = µ1 +µ2 and variance σ2

12 = σ2
1 + σ2

2 , the distribution
of phenotypes in the carrier population pφ,C is also normal with mean,

MC = mC + µe, (B3)

and variance,
VC = vC + νe. (B4)

B.2 Selected donors

Additionally, the product of two Gaussians is also a Gaussian (not necessarily normalized) with
mean,

µp =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

,

and variance,45

σ2
p =

σ2
1σ

2
2

σ2
1 + σ2

2

.

Thus pe ≡ pe,C is symmetric around the mean µe such that,

pe(φ− g) = pe((g + 2µe)− φ),

and equation (A14) becomes,

pg,D(g) =
1

Zs
pg,C(g)[pe ∗ S](g + 2µe). (B5)

The convolution of pe and S has mean µe + µo and variance νe + νo. If we write,

A(g) = [pe ∗ S](g + 2µe),

then A is a Gaussian with variance νe+ νo and mean µe+µo− 2µe = µo−µe. From the product
formula above, pg,D ∼ N (mD, vD),

mD =
mC(νe + νo) + (µo − µe)vC

vC + νe + νo
, (B6)

vD =
vC(νe + νo)

vC + νe + νo
. (B7)

The distribution of phenotypes in the donor population follows from equation (A15) directly.
So, pφ,D ∼ N (MD, VD),

MD =
MCνo + µoVC

νo + VC
, (B8)

VD =
VCνo
VC + νo

. (B9)
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B.3 Recipients

The transmission function T determines the viral genotype of the recipient, given that the geno-50

type of the donor was gR. We assume that T is normally distributed around gR with variance
νt. Thus equation (A17) becomes

pg,R(gR) =

∫
pt(gR − gD)pg,D(gD) dgD,

where pt is a Gaussian with zero mean and variance νt. This integral is again a convolution,
such that pg,R ∼ N (mR, vR) with,

mR = mD, (B10)
vR = vD + vt. (B11)

Equivalently for the phenotype distribution in the recipients, from equation (A21),

pφ,R(φR) =

∫
pt+e(φR − gD)pg,D(gD) dgD,

where pt+e is a Gaussian with mean µ0
e and variance vt + ν0

e . Thus the convolution is again
Gaussian and pφ,R ∼ N (MR, VR),

MR = mD + µ0
e, (B12)

VR = vD + vt + ν0
e . (B13)

B.4 New carriers

The same as for transmission, we assume that the evolver functions for the viral and environ-55

mental contribution is Eg ∼ N (gR + µi, ν
g
i ) and Ee ∼ N (eR + µie, ν

i
e), respectively. The evolved

population of new carriers has a genotype distribution given by equation (A23).

pg,E(gE) =

∫
pEg((gE − µi)− gR)pg,R(gR)dgR,

where pE has mean zero and variance νgi , such that pg,E ∼ N (mC′ , vC′),

mC′ = mR + µi, (B14)
vC′ = vR + νgi . (B15)

The distribution of phenotypes in the evolved population as a function of the distribution in
the recipient population is,

pφ,E(φE) =

∫∫∫
pg,R(gR)Eg(gE , gR)pe,R(eR)Ee(φE − gE , eR) dgR dgE deR.

Let pEe(x) be a normal distribution with mean zero and variance νie,

pφ,E(φE) =

∫∫
pg,R(gR)Eg(gE , gR)

∫
pe,R(eR)pEe((φE − gE − µie)− eR) dgR dgE deR (B16)

=

∫∫
pg,R(gR)Eg(gE , gR)f1(φE − gE) dgR dgE , (B17)

6



with f1 a normal distribution with mean µ0
e + µie and variance ν0

e + νie. Integrating the convo-
lutions further,

pφ,E(φE) =

∫
f1(φE − gE) dgE

∫
pg,R(gR)pEg(gE − gR − µi) dgR (B18)

=

∫
f1(φE − gE)f2(gE) dgE , (B19)

where f2 is a normal distribution with mean mR + µi and variance vR + νgi .60

The distribution of the phenotype follows from the convolution of f1 and f2, such that pφ,E ∼
N (MC′ , VC′),

MC′ = mR + µi + µ0
e + µie, (B20)

VC′ = vR + νgi + ν0
e + νie (B21)

C Equilibrium solutions for mean and variance of spVL

Concerning log spVL under the assumption of normal distributions, we have the following ex-
pressions for the distribution of log spVL in the current carriers and the carriers in the following
generation,

φC ∼ N (mC + µe, vC + νe) , (C1)

φC′ ∼ N
(
mC(νe + νo) + (µo − µe)vC

vC + νe + νo
+ µi + µ0

e + µie,
vC(νe + νo)

vC + νe + νo
+ νt + νgi + ν0

e + νie

)
.

(C2)

The system is said to be in equilibrium when the distribution in phenotype not longer changes
from one generation to the next, thus,

mC + µe =
mC(νe + νo) + (µo − µe)vC

vC + νe + νo
+ µi + µ0

e + µie, (C3)

vC + νe =
vC(νe + νo)

vC + νe + νo
+ νt + νgi + ν0

e + νie. (C4)

From equation (C4) we readily find the equilibrium solution for vC ,

ṽC =
νt + νi + (ν0

e + νie − νe)
2

(
1±

√
1 + 4

νe + νo
νt + νi + (ν0

e + νie − νe)

)
. (C5)

The equilibrium solution of mC as a function of vC is then,

m̃C = (µo − µe) +
(
µi + µ0

e + µie − µe
)(

1 +
νe + νo
ṽC

)
. (C6)

If we assume that at equilibrium, the distributions of environmental factors no longer change
from one generation of carriers to the next, then,

µ′e ≡ µ0
e + µie = µe, (C7)

ν ′e ≡ ν0
e + νie = νe, (C8)
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where the prime signifies the values of mean and variance of environmental factors in the new
generation of carriers. Thus the equilibrium solutions for the phenotype distribution are,

M̃C = m̃C + µe = µo + µi

(
1 +

νe + νo

ṼC − νe

)
, (C9)

ṼC = ṽC + νe =
νt + νgi

2

(
1±

√
1 + 4

νe + νo
νt + νgi

)
+ νe. (C10)

We can express the equilibrium solutions in terms of the heritability h2, where

νe = (1− h2)ṼC . (C11)

Inserting into equation (C10),65

ṼC =
νt + νi

2

1 +

√
1 + 4

(1− h2)ṼC + νo
νt + νi

+ (1− h2)ṼC .

By rearranging the terms we get,

ṼCh
2 2

νt + νi
− 1 =

√
1 + 4

(1− h2)ṼC + νo
νt + νi

.

Squaring both sides yield the quadratic equation,

Ṽ 2
C −

νt + νi
(h2)2

ṼC −
(νt + νi)νo

(h2)2
= 0.

that has the solutions,

ṼC =
νt + νi
2(h2)2

1±

√
1 +

4(h2)2νo
νt + νi

 .

Keeping only the non-negative solution and inserting equation (C11) in the expression for M̃C ,

M̃C = µo + µi

(
1 +

(1− h2)ṼC + νo

ṼC − (1− h2)ṼC

)
= µo + µi

(
1 +

(1− h2)ṼC + νo

h2ṼC

)
, (C12)

ṼC =
νt + νi
2(h2)2

1 +

√
1 +

4(h2)2νo
νt + νi

 . (C13)

C.1 Equilibrium of environmental factors

In the main text we argue that there is good evidence that the phenotypic distribution of spVL
is approximately in equilibrium, and thus MC′ = MC and VC′ = VC . In the above derivation,
we assume that this also implies an equilibrium of the environmental factors,

µ′e ≡ µ0
e + µie = µe,

ν ′e ≡ ν0
e + νie = νe.
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It is straightforward to see that if both the distributions for g and e are in equilibrium, then70

the distribution for φ is also in equilibrium. There are, however, certain special cases that can
be considered where an equilibrium of φ does not imply an equilibrium of g and e. Firstly,
the distribution of φ might converge faster to an equilibrium value than the distributions of
g and e. This would imply that the contributions of the virus and the environment to the
variance in spVL might still be changing over time. Consequently, heritability may also still75

be changing over time. Secondly, the contributions of g and e may be diverging in opposite
directions, such that the change in the distribution of g cancels out the change in the distribution
of e on the population level. This scenario, however, is unlikely as it requires the viral and
host/environmental factors that influence spVL to increase or decrease indefinitely. Thirdly,
the change in g and e on the population level is described by a stable limit cycle, such that the80

distribution in spVL in the population is constant through time, φ(t) = g(t) + e(t) ≡ φ̃. While
stable limit cycles can appear in theoretical models, they are rarely observed in real complex
biological systems, due to the delicate balance required between the variables. Furthermore,
this balance has to be maintained on a population level, which would require some sort of
synchrony between the evolutionary changes happening in each individual host. We therefore85

argue that it is most conceivable that the equilibrium of spVL in the population also implies an
equilibrium of the distribution of viral and environmental effects.

D Connection to integral projection models

Our description of the distributions of log spVL change over generations has strong parallels
to integral projection models used in ecology to describe how the composition of population with90

continuous traits changes over discrete time (2–4). In this formalism, the number of individuals
with trait y in generation t+ 1 is given by (2),

n(y, t+ 1) =

∫
Ω
k(y, x)n(x, t)dx. (D1)

Here, k(y, x) is called the kernel and defines the number of offspring with trait y produced by
an offspring of trait x in generation t.
Heritability can be viewed as the regression of offspring on parents, i.e. new carriers on old95

carriers. As we assume the distribution of log spVL in carriers to be normal, the conditional
distribution of log spVL in new carriers given an log spVL current carriers is,

p(φC′ |φC = ϕ) ∼ N

(
MC +

√
VC
VC′

ρ(ϕ−MC′), (1− ρ2)VC

)
, (D2)

where ρ =
√
VC′/VCh

2 is the correlation coefficient between carriers in subsequent generations.
Thus the projection kernel k(φC′ , φC) = p(φC′ |φC).

E Viral load in Geskus et al. (1)100

We extracted the viral load measurements from the pdf file of Geskus et al. (1) to provide a
further estimate of mean and variance of viral load. This study is also based on the Amsterdam
cohort, but the patient population is not identical to the one used in Fraser et al. (5). Excluding
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measurements that were under the detection limit we estimate a mean of 4.22 logs with a vari-
ance of 0.59. The fitted line in figure S1 shows that the distribution is well approximated by105

a normal distribution, although a statistical test reveals a significant deviation from normality.
Note that the viral loads reported in Geskus et al. (1) are not spVLs, but include also repeated
measurements from individual patients. As a consequence the sample variance is likely an
overestimate of the real variance of spVL.
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Figure S1. Distribution of spVL in donors and recipients in Geskus et al. (1). The plot is confined to viral
load measured between years 1 and 5 after serovonversion.

F Deviations from normality110

F.1 Exact transmission potential

In this section we assess to what degree the normal approximation to the transmission poten-
tial (TP) results in a distribution of spVL in HIV carriers that is different from using the TP as
reported in Fraser et al. (5). We also account for uncertainty in the transmission potential by
accounting for the confidence intervals in the reported TP. To this end we simulate 20 repro-115

duction cycles (i.e. selection for donors, transmission and intrahost evolution) in a population
of N = 105 individuals. At each reproduction cycle the number the donors of the N recipients
are selected in the following manner:

(a) The maximum likelihood estimate for the number of infections caused by an individual
with spVL v, as well as the upper and lower bounds of the confidence are determined by120

linear interpolation of the TP from (5).

(b) We then construct a triangular distribution for the probability of x secondary infections at
spVL v between the lower xlo and upper xhi bounds of the confidence interval, such that
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the probability of x secondary infections fulfils p(xlo|v) = p(xhi|v) = 0 and argmaxxp(x|v) =
xML = TP(v). The value of p(xML) is such that

∫ xhi
xlo

p(x)dx = 1.125

p(x|v)

x
xML=TP(v)xlo xhi

(c) The number of secondary infections xi at the current reproduction cycle for each indi-
vidual i is then sampled from the constructed distribution for each corresponding spVL
vi.

(d) Donors for all new recipients are picked randomly from the donor population with prob-130

ability proportional to xi.

The simulated distribution of spVL in carriers after 20 cycles is shown in Figure S2. The normal
approximation is in very good agreement with the simulated distribution.
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Figure S2. Simulated distribution of spVL in HIV carriers after 20 reproduction cycles when using
the exact transmission potential together with the reported confidence intervals. Other parameters are
µo = 4.5, νo = 1, µe = 3, νe = 1, µi = 0.2, νi = 0.3, νt = 0.2. The starting population is assumed
normally distributed with mean mg = 4 and vg = 0.4. The dashed line shows the equilibrium under the
normal approximation to the transmission potential.

F.2 Skewness in intrahost evolution and transmission bottleneck

To test the effect of deviations from normality of the processes of intrahost evolution and the135

transmission bottleneck we sampled from a skew-normal instead of a normal distribution for
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both processes. The skew-normal distribution is characterized by a location, a shape and a
scale parameter that together define mean, variance and skewness of the distribution. If the
shape parameter is zero, the distribution has no skewness and reduces to normal distribution.
To sample from the skew-normal distribution we used the rsnorm function of the VGAM pack-140

age in R (6). Figure S3 shows the effect of skewness in processes of intrahost evolution and the
transmission bottleneck mean, variance and skewness of the spVL distribution in the carrier
population by varying skewness in both processes from -0.9 to 0.9. The key result is that the
analytical results for mean and variance of the spvL distribution remain excellent approxima-
tions even for strong skewness in the processes of intrahost evolution and the transmission145

bottleneck.
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C: skewness in carrier population
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Figure S3. The effect of skewness in the processes of intrahost evolution and the transmission bottle-
neck on mean, variance and skewness of simulated distributions of spVL in carriers. Panel A shows
the relative deviation of the computed mean from the analytical mean (eq. C12), i.e. the difference
of computed and analytical mean divided by the analytical mean. Panel B shows the corresponding
relative deviation from the analytical variance (eq. C13). Panel C shows the skewness of the distri-
bution of spVL in the carrier population. The grey lines show distributions with the corresponding
level of skewness. The color legend applies to all panels. Generally the relative deviation of mean and
variance remains below a few percent even for large skewness in the processes of intrahost evolution
and the transmission bottleneck. Also the absolute level of skewness in the simulated distributions
(panel C) remains below 0.1. Taken together this indicates that even strongly skew processes lead to
small effects on the resulting distribution of spVL in HIV carriers. Parameters of the simulation are
µo = 4.5, νo = 1, µe = 3, νe = 1, µi = 0.2, νi = 0.3, νt = 0.2. The population size used in the simulation is
200000.

F.3 Influence of the acute and AIDS phase on the transmission potential

One concern regarding the transmission potential from Fraser et al. (5) is that it neglects trans-
mission from the acute and the AIDS phase of the infection. This is addressed in more detail in
the supplementary material of Fraser et al. (5). As described therein the required correction de-150
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pends on the assumed model of sexual mixing and partner exchange rate. One way to account
for the contribution of these phases is to add a constant term to the transmission potential. This
term was estimated in Fraser et al. (5) to be 0.67 (0.32-1.23 95% c. i.) for primary infection and
0.50 (0.31-0.96 95% c. i.) for pre-AIDS/AIDS. A reasonable range for this constant, c, is thus
[0, 2].155

We performed simulations to compare the equilibrium mean and variance for a transmission
potential with a constant c to the analytical expression obtained assuming c = 0 (see figure
S4). The simulations show that both mean and variance increase with increasing c. Adding a
constant to the transmission potential results in overall weaker selection for viral load. This
leads to a general increase in variance. The mean increases because the transmission potential160

is weaker in opposing the force of intrahost evolution towards higher spVL.
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Figure S4. The effect of adding a contribution of the acute and AIDS phases to the overall transmission
potential. We show the relative increase of mean and standard deviation compared to the analytical
solution (eqs. C12 and C13) as a function of the constant c that is added to the transmission potential.
This constant c spans a realistic range of contributions from the acute and AIDS phase as described in
Fraser et al. (5). Parameters of the simulation are µo = 4.5, νo = 1, µe = 3, νe = 1, µi = 0.2, νi = 0.3, νt =
0.2.

Furthermore, we tested the effect a corrected transmission potential by repeating the rejection
sampling procedure using c = 1.2 (see figure S5). Using a corrected transmission potential
generally narrows down the acceptable parameter ranges (because of the effect of increasing
variance and mean shown in figure S4). The areas of highest posterior probability remain in165

regions of high heritability. Thus, in summary, modifying the transmission potential to account
for the contributions of the acute and AIDS phase does not change the two key conclusions,
namely that high heritability is the most parsimonious explanation for the observed mean and
variance of spVL and that the forces of intrahost evolution must be weak.
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Figure S5. Posterior distribution of parameters from the rejection sampler assuming a transmission
potential plus a constant c = 1.2. The figure is analogous to figure 3 in the main text. Since no analytical
solutions are available for the modified transmission potential we performed simulations to measure
the approximate equilibrium mean and variance. Because of the higher computational demands we
sampled 40′000 random sets of parameter values from these restricted priors: 0 < νe < 0.6; 0 < µi <
0.3; 0 < νi, νt < 0.15. For comparison, however, we plot the accepted parameters over the same range
as in figure 3 in the main text.
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