
Supplemental Material

Analysis of Composition of Microbiomes (ANCOM):

A novel method for studying microbial composition

S1 Data and the statistical parameters

For simplicity of exposition and notation, throughout this section we shall use the phrase

“microbial ecosystem” or simply “ecosystem” to describe the source of the “specimen”

which is interrogated to obtain the OTUs of various taxa. For example, when comparing

the composition of gut microbiome of babies born vaginally with those born through C-

section the ecosystem of interest is the gut and the fecal sample is the specimen. Hence

it is important to note that the observed OTUs are the taxa abundance in the specimen

and not the abundance in the entire ecosystem where the specimen was derived from.

Using the specimen level OTU abundance data, in this paper we develop methodology

for comparing total taxa abundance in the ecosystem between two or more populations.

Throughout this section K denotes the number of populations and nk denotes the number

of subjects randomly selected from the k-th population, k = 1, 2, . . . , K. For example,

to compare the gut microbiome composition of vaginally delivered babies with C-section
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delivered babies, we obtain a sample of 100 vaginally delivered babies and a sample of

50 C-section delivered babies. Here K = 2 and n1 = 100 and n2 = 50. Throughout the

paper, in the main text as well as in this Supplementary text, the terms “population”

and “test group” (or simply “group”) are used interchangeably.

I. Observable data: For a biological specimen obtained from the j-th subject, j =

1, . . . , nk from the k-th population, let Y
(k)
j = (Y

(k)
1j , Y

(k)
2j . . . , Y

(k)
pj )′ denote the vector

of OTUs representing p taxa. Note that Y
(k)
j represents the abundance in the biological

specimen and not the total microbial abundance in the ecosystem at the time of sam-

pling. Secondly, Y
(k)
j is one random realization from the j-th subject, which will vary

from specimen to specimen from the same subject. Furthermore, subjects themselves

are a random sample from the given population. Thus implying that Yj is a random

variable which has two components of variation, namely, variability between specimens

within the same subject and variability between subjects. Typically, in most microbiome

studies researchers do not obtain more than one specimen at a given time, consequently,

variability between specimens within subject at a given time point is not measured.

Hence, similar to existing methods, in this paper we therefore do not account for speci-

men to specimen variability within a given subject at a given time point. However, it is

straightforward to modify the methodology to account for that variance component.

II. Statistical parameters: In the following we describe all the parameters governing the

OTU data obtained from a random sample of subjects from a population. Throughout

this section we denote the average value of a random observation Y over the suitable

population (which will be clear from the context) by E(Y ), the expected value of Y .

The terms mean, average value, expected value, and expectation of abundance are all

equivalent and will be used interchangeably. In the remainder of the article, we use i, j

and k to denote taxon, individual subjects and population respectively.
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A. Subject specific parameters

Expected abundance of a taxon in a specimen within a subject: For a randomly chosen

biological specimen (e.g. fecal sample) obtained from the j-th subject in the k-th popula-

tion, let the expected OTU count of the i-th taxon (e.g. Bifidobacterium) be denoted by

E(Y
(k)
ij |θ

(k)
ij ) = θ

(k)
ij . It is important to note that θij represents the expected abundance

within the specimen from a subject and not the abundance of the taxon in the ecosystem

of the subject.

Expected abundance of a taxon in the ecosystem within a subject: For the j-th subject

in the k-th population, we denote the expected abundance of the i-th taxon in the

ecosystem of interest by µ
(k)
ij . Since a specimen obtained from the j-th subject is a small

fraction of the total in the ecosystem, it is reasonable to assume that for the i-th taxon

µ
(k)
ij = cjθ

(k)
ij for some positive constant cj that is specific to subject j at the time of

sampling. For example, cj may represent the total volume of the ecosystem where the

biological specimen was derived from.

Expected relative abundance of a taxon in a specimen within a subject: For a randomly

selected biological specimen obtained from the j-th subject in the k-th population, the

expected relative abundance of the i-th taxon is given by λ
(k)
ij =

θ
(k)
ij∑p

r=1 θ
(k)
rj

.

Expected relative abundance of a taxon in the ecosystem of interest within a subject: The

expected relative abundance of the i-th taxon in the ecosystem of interest in the j-th

subject from the k-th population is parameterized as γ
(k)
ij =

µ
(k)
ij∑p

r=1 µ
(k)
rj

. If all taxa are

randomly distributed in the ecosystem where the specimen is derived from, and if one

assumes that the biological specimen is a reasonable representation of the true mix for

a given subject, then one may assume γ
(k)
ij = λ

(k)
ij .
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B. Population specific parameters

Expected abundance of a taxon in a specimen obtained from a random subject in the

k-th population: Note that θ
(k)
ij (defined above) is a random variable and changes from

subject to subject within the k-th population. The expected abundance of the taxon in

a random specimen obtained from a random subject in the k-th population is given by

η
(k)
i = E(θ

(k)
ij ). It is important to note that η

(k)
i represents mean abundance in a specimen

and NOT the mean abundance of the taxon in the ecosystem where the specimen was

derived from.

Expected abundance of a taxon in the ecosystem of interest in the k-th population: Sim-

ilar to θ
(k)
ij , µ

(k)
ij is a random variable and changes from subject to subject in the k-th

population. Hence the mean abundance of a taxon in the ecosystem of interest in the

k-th population is given by ν
(k)
i = E(µ

(k)
ij ). This is the primary parameter of interest for

biologists.

Expected relative abundance of a taxon in a specimen obtained from a random subject in

the k-th population: For the i-th taxon in the k-th population we define δ
(k)
i =

η
(k)
i∑p

r=1 η
(k)
r

.

Expected relative abundance of a taxon in the ecosystem of interest in the k-th population:

For the i-th taxon, the expected relative abundance in the ecosystem of interest for the

population is given by:

ρ
(k)
i = E

[ θ
(k)
ij∑p

r=1 θ
(k)
rj

]
= E

[ cjθ
(k)
ij∑p

r=1 cjθ
(k)
rj

]
= E

[ µ
(k)
ij∑p

r=1 µ
(k)
rj

]
Note that the above expression does not require knowledge of the distribution of cj’s.

The parameters described above, along with their estimators, are summarized in Table

S1.
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Table S1: Summary of various parameters and corresponding estimators

Analysis Parameter Description Unknown Parameter Estimator

Subject specific Expected abundance of i-th taxon in a
random specimen from the j-th subject
in the k-th population

E(Y
(k)
ij |θ

(k)
ij ) = θ

(k)
ij Y

(k)
ij (OTU for i-th taxon)

Expected relative abundance of i-th
taxon in a random specimen from the
j-th subject in the k-th population

λ
(k)
ij =

θ
(k)
ij∑p

r=1 θ
(k)
rj

λ̂ij =
Yij∑p

r=1 Yrj

Expected total abundance of i-th taxon
in j-th subject in the k-th population

µ
(k)
ij = cjE(Y

(k)
ij |θ

(k)
ij ) Not estimable unless cj is

known

Expected relative abundance of i-th
taxon in j-th subject in the k-th pop-
ulation

γ
(k)
ij =

µ
(k)
ij∑p

r=1 µ
(k)
rj

γ̂
(k)
ij =

Y
(k)
ij∑

r=1pYrj

Population specific Expected abundance of i-th taxon in a
random specimen from the k-th popu-
lation

η
(k)
i = E(θ

(k)
ij ) η̂

(k)
i = 1

nk

∑nk
r=1 Y

(k)
ir

Expected abundance of i-th taxon in
the k-th population

ν
(k)
i = E(µ

(k)
ij ) Not estimable unless cj ’s are

known

Relative abundance of i-th taxon in the
k-th population

ρ
(k)
i = E(γij(k)) ρ̂

(k)
i = 1

nk

∑n
r=1 γ̂

(k)
ir

S2 Analysis of Composition of Microbiomes (AN-

COM) using relative abundance

Statistical Hypotheses

As noted earlier, for i = 1, 2, . . . , p, the comparison among the K populations in terms

of η
(k)
i is not equivalent to comparing ν

(k)
i . However, the relative abundance ρ

(k)
i ’s can

be compared using the specimen level relative abundance estimates obtained from each

subject. More precisely, λ̂
(k)
ij can be used for drawing inferences on ρ

(k)
i among the K

populations. For each subject j, j = 1, 2, . . . , nk, k = 1, 2, . . . , K,
∑nk

i=1 λ̂
(k)
ij = 1, we view

these as compositional data and apply the general ideas developed by Aitchison[1] to

analyze microbiome data. Following Aitchison we log-transform the ratios after adding
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a small constant ω to Y
(k)
ij to avoid logarithms for zero values. In all numerical work

reported in this paper we took ω = 0.001, although some may prefer to take ω = 1.

Note that log-transformation of data is inspired by the Box-Cox family of transforma-

tions which are routinely used in data analysis [2]. Thus, along the lines of Aitchison’s

compositional data analysis, we perform all our inferences on the expectation of the log-

transformed ratios rather than the ratios themselves.

As demonstrated in the following propositions the above formulation allows us to

draw inferences regarding the mean abundances ν
(k)
i , the main parameter of interest, un-

der the following assumption which may be reasonable in the context of microbiome data.

Since within each population k and for each taxon i, the random variables µ
(k)
ij as well

as γ
(k)
ij are identically and independently distributed for all subjects j, j = 1, 2, . . . , nk,

we shall drop the index j from µ
(k)
ij as well as from γ

(k)
ij in the following propositions.

For simplicity of exposition the rest of this section will be devoted to the case K = 2,

although the methodology is applicable more generally for K > 2.

Assumption A: The mean abundance (in log scale) of at most p − 2 taxa are different

between two populations. More precisely, suppose E[log(µ
(1)
i /µ

(2)
i )] = di, i = 1, 2, ..., p.

Then among d1, d2, . . . , dp, at most p− 2 are non-zero.

Assumption B: Mean abundance (in log scale) of all p taxa do not differ by the same

amount between two populations. But if they do, then the difference is zero. More

precisely, suppose E[log(µ
(1)
i /µ

(2)
i )] = di, i = 1, 2, ..., p, and if di = d, for all i. Then

d = 0.

Note: For notational simplicity we shall drop the phrase “(in log scale)” from “mean

abundance (in log scale)” in rest of this text.

Recall that E[log(γ
(1)
i /γ

(2)
i )] = E[log(µ

(1)
i /µ

(2)
i )]. Therefore the above assumptions apply
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at the specimen level as well.

Proposition 1: For j = 1, 2, . . . , p (with p > 2), suppose either Assumption A or As-

sumption B is true. Furthermore, suppose for all j and r (r 6= j), E[log(γ
(1)
j /γ

(1)
r )] =

E[log(γ
(2)
j /γ

(2)
r )]. Then, for all j, E[log(µ

(1)
j )] = E[log(µ

(2)
j )].

Proof: Since for all j and r, (r 6= j), E[log(γ
(1)
j /γ

(1)
r )] = E[log(γ

(2)
j /γ

(2)
r )], therefore

E[log(µ
(1)
j )]− E[log(µ

(1)
r )] = E[log(µ

(2)
j )]− E[log(µ

(2)
r )]. Hence

E[log(µ
(1)
j )]− E[log(µ

(2)
j )] = E[log(µ(1)

r )]− E[log(µ(2)
r )], ∀j, r, (r 6= j). (1)

Assumption A implies that there exist at least 2 taxa whose mean abundances

are same between the two populations. Let r be the index of one such taxon, i.e.,

E[log(µ
(1)
r )] = E[log(µ

(2)
r )]. This, together with (1), implies thatE[log(µ

(1)
j )]−E[log(µ

(2)
j )] =

0 for all j.

Instead of Assumption A, suppose Assumption B is true. Again from (1) we note that

for every j and for every r (r 6= j), E[log(µ
(1)
j )]−E[log(µ

(2)
j )] = E[log(µ

(1)
r )]−E[log(µ

(2)
r )].

Thus appealing to Assumption B we have E[log(µ
(1)
j )]− E[log(µ

(2)
j )] = 0.

Proposition 2: Suppose there are p taxa (p > 2) and suppose Assumption B is true.

(a) If there exists a j such that for every r, r 6= j,

E[log(γ
(1)
j /γ(1)

r )] 6= E[log(γ
(2)
j /γ(2)

r )]. (2)

Then E[log(µ
(1)
j )] 6= E[log(µ

(2)
j )].

(b) Suppose for some j, j = 1, 2, . . . , p, E[log(µ
(1)
j )] = E[log(µ

(2)
j )], then there exists at
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least one r(6= j) such that (2) does not hold.

Proof: Recall that for all j, r = 1, 2, . . . , p, E[log(γ
(1)
j /γ

(1)
r )] = E[log(µ

(1)
j /µ

(1)
r )] and

E[log(γ
(2)
j /γ

(2)
r )] = E[log(µ

(2)
j /µ

(2)
r )]. According to the assumption in (a) there exists a

j such that for all r 6= j, E[log(γ
(1)
j /γ

(1)
r )] 6= E[log(γ

(2)
j /γ

(2)
r )]. Assumption A implies

that there exist at least 2 taxa whose mean abundances are same between the two

populations. Let r be the index of one such taxon, i.e., E[log(µ
(1)
r )] = E[log(µ

(2)
r )].

Equivalently we have E[log(γ
(1)
r )] = E[log(γ

(2)
r )]. Combining this with (2) we have

E[log(γ
(1)
j )] 6= E[log(γ

(2)
j )]. Equivalently we have E[log(µ

(1)
j )] 6= E[log(µ

(2)
j )]. Hence we

prove (a).

To prove (b), suppose for some j, j = 1, 2, . . . , p, E[log(µ
(1)
j )] = E[log(µ

(2)
j )]. Then

we know from Assumption A that there exists at least 1 more taxon that has same

mean abundance in the two populations. Denote the index of this taxon by r. Then

E[log(µ
(1)
r )] = E[log(µ

(2)
r )] and consequently E[log(γ

(1)
j /γ

(1)
r )] = E[log(γ

(2)
j /γ

(2)
r )]. Hence

we prove (b).

Remark 1 : If for all r and j (r 6= j) E[log(γ
(1)
j /γ

(1)
r )] 6= E[log(γ

(2)
j /γ

(2)
r )], then there exists

at least p− 1 taxa which have differentially abundant population means. If exactly p− 1

taxa are differently abundant, then it is not possible to identify taxa with differentially

abundant population means using the log ratios. In most applications, it is unlikely that

there will be at least p− 1 taxa that have differentially abundant population means.

We now provide two examples to illustrate the above propositions.

Example 1: To illustrate Proposition 1, suppose we have two groups each consisting of

three taxa. Suppose (E(log(µ
(1)
1 ), E(log(µ

(1)
2 ), E(log(µ

(1)
3 )) = (3, 4, 2) and
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(E(log(µ
(2)
1 ), E(log(µ

(2)
2 ), E(log(µ

(2)
3 )) = (a, b, c). Then under the assumptions of Propo-

sition 1 we have

a− b = −1, a− c = 1, b− c = 2. (4)

For some c1, c2 and c3, let

a− 3 = c1, b− 4 = c2, c− 2 = c3. (5)

Substituting the values of a, b and c from (5) into (4) we obtain

c1 = c2 = c3.

The above equality together with (5) and Assumption B imply that

c1 = c2 = c3 = 0.

Hence from (5) we have a = 3, b = 4, c = 2. Thus satisfying proposition 1.

Example 2: Similar to Example 1, suppose we have two groups consisting of three taxa

each. Suppose (E(log(µ
(1)
1 )), E(log(µ

(1)
2 )), E(log(µ

(1)
3 ))) = (3, 4, 2) and (E(log(µ

(2)
1 )),

E(log(µ
(2)
2 )), E(log(µ

(2)
3 ))) = (1, 4, 2). Thus in this example, only E(log(µ

(1)
1 )) 6= E(log(µ

(2)
1 ))

but the rest are equal. Trivially, for all r 6= 1, we have E(log(µ
(1)
1 /µ

(1)
r )) 6= E(log(µ

(2)
1 /µ

(2)
r )),

thus verifying part (a) of Proposition 2. Similarly, it is trivial to verify part (b) of Propo-

sition 2.

Since data on taxa abundance in the ecosystem is not available, therefore, for i =
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1, 2, . . . , p, it is not possible to test the following hypotheses directly

H0i : E(log(µ
(1)
i )) = E(log(µ

(2)
i )),

against Hai : E(log(µ
(1)
i )) 6= E(log(µ

(2)
i )). (6)

However, by virtue of Propositions 1 and 2, for each i, the above hypotheses can be

tested by testing the following (p − 1) hypotheses regarding the abundance of the i-th

taxon relative to the r-th taxon for every r 6= i.

H0ri : E[log(µ
(1)
i /µ(1)

r )] = E[log(µ
(2)
i /µ(2)

r )],

against Hari : E[log(µ
(1)
i /µ(1)

r )] 6= E[log(µ
(2)
i /µ(2)

r )]. (7)

Statistical Decision Rule:

For each taxon i, i = 1, 2, . . . , p, we test the hypotheses (7) for all r 6= i using the log-

ratios log(
γ̂
(k)
ij

γ̂
(k)
rj

), j = 1, 2, . . . , nk, k = 1, 2, . . . , K. The testing problem may be formulated

using standard ANOVA model:

log
( γ̂(k)

ij

γ̂
(k)
rj

)
= αir + βirk + εirjk, (8)

where, for a given pair i, r, αir is the overall common mean and βirk is the effect of the

k-th group (or k-th level of the factor). We may assume εirjk are identically and inde-

pendently distributed across samples j = 1, 2, . . . , nk and groups k = 1, 2, . . . , K, with

εirjk ∼ N(0, σ2
ir). Of course, as in standard ANOVA, one may allow heteroscedasticity,

where the variance σ2
ir may vary with group. Then the null hypothesis, for the taxa pair

i and r reduces to the standard ANOVA hypothesis H0ir : βir1 = βir2 = . . . = βirK = 0.
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For each i and for each r 6= i, as with classical statistical inference, depending upon

the validity of the distributional assumptions regarding the random error ε, and sample

sizes, one may use either the standard parametric t-test (or F-test if K > 2) or use a

nonparametric procedure such as Wilcoxon rank sum test (or the Kruskal-Wallis test for

K > 2) or a resampling procedure such as the permutation or bootstrap to compute the

p-values.

Altogether we are testing p(p − 1)/2 distinct hypotheses H0ir, r 6= i. Consequently,

when decisions regarding the significance of each taxa is being made, we need to apply

a multiple testing correction such as the Benjamini-Hochberg (BH) procedure when re-

jecting the sub-hypothesis H0ir, r 6= i. However, if p is small (say, less than 10) then

one may apply the Bonferroni procedure rather than the BH procedure. For each taxon

i, let Wi denote the number of sub-hypotheses H0ir, r 6= i, that are rejected. In the

ideal setting, by virtue of Propositions 1 and 2, we would reject the null hypothesis

(1) if Wi = p − 1. However, such a decision rule is potentially conservative. That is,

the cut-off p − 1 may be too stringent. If p is small (e.g. less than 10) then we may

arbitrarily choose the cut-off to be p − 2 otherwise we shall make use of the empirical

distribution of {W1,W2, . . . ,Wp} do determine the cut-off. Similar to gene expression

data, the empirical distribution of {W1,W2, . . . ,Wp} is bimodal with mode on the right

of distribution corresponding to taxa with differentially abundant means and the mode

on the left corresponding to the taxa whose means are not differentially abundant. Typ-

ical empirical CDF of {W1,W2, . . . ,Wp} is provided in Figure S1 the long flat region

corresponds to the flat region between the two modes. To arrive at suitable critical

value, we search for changes in FW (Wi), where FW is the empirical cumulative distri-

bution function of Wi’s. Starting from W(p), which is the largest order statistic of Wi,

we search intervals of length 0.05 to detect drops in FW (Wi). Let these intervals be
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denoted by Ij =
(
W(p) − 0.05(j)p,W(p) − 0.05(j − 1)p

]
, j = 1, 2, . . .. Let δj = ∆FW (Ij)

denote the change in FW in Ij. We choose w0 = min{Wi : Wi ∈ Ij} as the cutoff if

{δj ≥ τ, δj+1 < τ, δj+2 < τ}, where τ is a fraction (taken as 0.02 in this case). A value

of τ closer to 0 is equivalent to w0 close to p− 1, thereby indicating a more conservative

cutoff. Thus, for the i-th taxon, we reject the null hypothesis (1) if Wi > w0. Although

the choice of w0 is fairly flexible, for purposes of this article we choose w0 = 0.75.

Figure S1: Example plot of the empirical cumulative distribution function of Wi. The
vertical dotted lines show the intervals for determining the cutoff.
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Remark 2 : Whether Assumption A and Assumption B are valid or not, one can compare

relative abundances of taxa (at the ecosystem level) in two or more groups by testing hy-

potheses (7) against pre-specified reference taxon i. In such a case only p− 1 hypotheses

are tested instead of p(p− 1)/2 hypotheses as described above. Standard BH procedure

(or Bonferroni) is applied on the p− 1 p-values. Thus in this case all inferences will be

performed relative to the i− th taxon.
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Remark 3 : A multiple testing correction applied on the complete set of p-values corre-

sponding to H0ir, r 6= i is conservative due to the large number of hypotheses. Note that

each decision rule Wi > w0 depends only on the set of sub-hypotheses H0ir for a given

i. Hence an alternative correction strategy would be to apply the Benjamini-Hochberg

(or Bonferroni) procedure on H0ir for each taxon (i) separately, for determining Wi. We

recommend using this strategy in large microbiome datasets.

Remark 4 : Note that the p-values corresponding to the sub-hypotheses H0ir are poten-

tially dependent and the BH procedure is not necessarily robust for arbitrary dependence

structures. However, our extensive simulation studies (see Figure 2 in the main paper)

reveal that our above strategy always controls the FDR at 0.05, never exceeds it.

Remark 5 : Suppose a researcher conducts a multifactorial study and is interested in

comparing the taxa abundance across various levels of each factor. For example, an

investigator interested in studying taxa abundance according to various levels of factors

such as gender, race, mode of delivery, antibiotic use. Model (8) can be easily extended

as in classical factorial analysis model consisting of f factors:

log
( γ̂(k1,k2,...,kf )

ij

γ̂
(k1,k2,...,kf )
rj

)
= αir + βirk1 + βirk2 + . . .+ βirkf + εirjk1k2...kf , (9)

where βirks denotes the effect of ks-th level of the s-th factor. As in classical multi-

factorial ANOVA, one can even introduce interactions into the model.

Remark 6 : As in the case of standard linear fixed and mixed models, the above method-
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ology can be easily extended to account for covariates and random effects by suitably

modifying (9). Thus the standard machinery available for linear fixed and mixed effects

models can be exploited, the only difference being the outcome or response variables are

suitable log-ratios of observed abundances of taxa in the sample. One can invoke PROC

GLM or PROC MIXED in SAS or use packages such as lme4 or nlme in R.

Remark 7 : In view of Remark 6, when there are several covariates present in the

model, a researcher can apply his/her favorite model selection procedure for selecting

variables/factors to arrive at a parsimonious model for further analysis.

Table S2: Comparison of various methods available in literature

Article Model Parameter studied Assumptions

La Rosa et al. 2012 [3] Overdispersed
Dirichlet-Multinomial
(ODM)

δi Taxa level OTU counts within each individual are
distributed as ODM.

Holmes et al. 2013 [4] Dirichlet-Multinomial
mixtures

δi Matrix of occupancies follow multinomial distri-
bution.

Chen and Li 2013 [5] Overdispersed
Dirichlet-Multinomial
(ODM)

ηi Same model as La Rosa et al. 2012. Used for
variable selection.

Paulson et al. 2013 [6] Zero Inflated Gaussian ηi 1. Logarithm of OTUs follow normal distribu-
tion.

2. Implicitly assume that the sum of the OTU
counts within a subject is constant.

This paper Aitchison’s log-ratio νi 1. Flexible. If distributional assumptions needed
for standard ANOVA are not satisfied then non-
parametric methods including resampling proce-
dures can be used.

2. Either (a) The mean abundance of at most
p− 2 taxa are different between two populations,
or (b) If all p taxa are differentially abundant then
the mean abundance of all p taxa do not differ by
the same amount between two populations. But
if they do, then the difference is zero.
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S3 An illustration

We re-analyzed a microbial dataset from a recently published study [7] to illustrate AN-

COM. LaRosa et al. [7] conducted a multifactorial study consisting of factors such as,

gender, mode of delivery, breast milk consumption, gestational age (categorized into

three levels, < 26 weeks, 26− 28 weeks and > 28 weeks). Other variables included, day

of life of the infant when the fecal sample was obtained (continuous variable), amount

of antibiotics used (continuous variable). Data were collected on 58 infants (922 obser-

vations) in two batches. Authors were specifically interested in comparing the various

levels of the above factors and the effect of above variables on the relative abundance of 3

microbial classes, namely, Bacilli, Clostridia and Gammaproteobacteria. Since repeated

fecal samples were collected on each infant, the authors used linear mixed effects models

(with AR(1) covariance structure) on the relative abundance data (the outcome variable)

for each class of bacteria separately. Furthermore they performed stratified analysis ac-

cording to the three gestational age categories separately since they were interested in

comparing the various levels of the above factors and the effect of above variables on

the relative abundance of 3 microbial classes, namely, Bacilli, Clostridia and Gammapro-

teobacteria according to the gestational age of the infant.

We implemented ANCOM on the log-ratios of the 4 bacterial classes (Bacilli, Clostridia,

Gammaproteobacteria and Others) using linear mixed effects modeling with AR(1) cor-

relation structure within each individual. Rather than performing a stratified analysis

by each gestational age category, we included gestational age as a 3 level factor in each of

our mixed effects models and, in addition to all the main effects, we included interactions

of each of the above factors and continuous variables with gestational age in order to

discover if the effects of any of the factors or variables changed with the gestational age.

Our methodology can be described in the following steps.
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(1) Step 1: For a given bacterial class, denoted by i, we fitted a log-ratio linear mixed

effects model consisting of all main effects, gestational age, gender, mode of delivery,

amount of breast milk, day of life of sample, amount of antibiotics used and batch.

Additionally, we included the interaction of each of these variables with gestational

age. Thus corresponding to each bacterial class i, we fitted 3 log-ratio mixed effects

models involving the above terms in the model. As in [7], correlations due to repeated

measurements were modeled using the AR(1) structure. Thus, for each i and each

interaction term, we obtain 3 p-values due to the three log-ratio linear mixed effects

models. Since 3 is small, we applied our statistical decision rule described above

using the Bonferroni correction rather than the BH correction for multiple testing

and the threshold w0 = p − 2 to declare if an interaction (with gestational age) for

the bacterial class i is significant at a false positive rate of 0.05.

(2) Step 2: Re-analyze the parsimonious model including the main effects and those

interaction terms which were significant in the previous step. Again we use our

statistical decision rule as described above.

Select all factors and variables (and interactions) that are significant in the above

step. Note that if an interaction is significant then we automatically report the

corresponding main effects as well.

Results of our analysis using ANCOM are summarized in Table S3, S4 and S5. Note

that for each class i, among all the interaction terms, only the interaction between C-

section and gestational age (GA∗C-Section) is significant in at least 2 log-ratio models,

i.e. exceed w0 = 3−2 = 1. Hence for all bacterial classes this interaction term is retained

for Step 2 of our analysis and all other interaction terms are dropped.

From Table S3 we observe that breast milk, day of life and GA∗C-Section are signifi-

cantly associated with the abundance of Bacilli. Similarly day of life, days on antibiotics

16



Analysis of composition of microbiomes

and GA∗C-Section are significantly associated with the abundance of Clostridia (Table

S4), while only day of life and GA∗C-Section are significantly associated with the abun-

dance of Gammaproteobacteria (Table S5).

All analyses reported in this section were using PROC MIXED procedure in SAS

version 9.0. For illustration purposes, in Figure 3 of the main text we provided the

unadjusted average OTU abundance of the three bacterial classes according to the sig-

nificant factors using PROC MIXED.

Table S3: ANCOM analysis of Bacilli. Models in the second step include all main effects
and the interaction of C-Section and gestational age categories which was significant
in the first step. The bacterial classes Bacilli, Clostridia, Gammaproteobacteria and
Others are denoted by B, C, G and O, respectively. The gestational age is denoted by
GA. Significant variables at the end of second step are highlighted in gray.

Step 1 Step 2

Factor B
C

B
G

B
O

B
C

B
G

B
O

GA 0.235 0.005 0.001 0.011 0.001 <.0001

Gender 0.181 0.451 0.057 0.085 0.426 0.093

C-Section 0.151 0.223 <.0001 0.088 0.145 <.0001

Breast milk 0.138 <.0001 0.098 0.132 0.001 0.005

Day of life <.0001 0.000 0.012 <.0001 0.001 0.026

Days on antibiotics 0.083 0.232 0.273 0.004 0.412 0.231

Sampling period 0.639 0.003 0.015 0.226 0.006 0.004

GA∗Gender 0.596 0.031 0.167

GA∗C-Section 0.003 <.0001 <.0001 0.001 <.0001 <.0001

GA∗Breast milk 0.341 0.084 0.418

GA∗Day of life 0.442 0.713 0.222

GA∗Days on antibiotics 0.591 0.505 0.908
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Table S4: ANCOM analysis of Clostridia. Models in the second step include all main
effects and the interaction of C-Section and gestational age categories which was signif-
icant in the first step. The bacterial classes Bacilli, Clostridia, Gammaproteobacteria
and Others are denoted by B, C, G and O, respectively. The gestational age is denoted
by GA. Significant variables at the end of second step are highlighted in gray.

Step 1 Step 2

Factor C
B

C
G

C
O

C
B

C
G

C
O

GA 0.235 0.023 0.521 0.011 0.053 0.051

Gender 0.181 0.057 0.980 0.088 0.656 0.144

C-Section 0.151 0.719 0.077 0.085 0.310 0.599

Breast milk 0.138 0.041 0.846 0.132 0.176 0.457

Day of life <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

Days on antibiotics 0.083 0.014 0.397 0.004 0.001 0.061

Sampling period 0.639 0.045 0.031 0.226 0.263 0.002

GA∗Gender 0.596 0.137 0.116

GA∗C-Section 0.003 0.012 0.068 0.001 0.002 0.019

GA∗Breast milk 0.341 0.141 0.864

GA∗Day of life 0.442 0.562 0.812

GA∗Days on antibiotics 0.591 0.311 0.562

S4 Simulation Study Design

We performed extensive simulation studies to investigate the performance of ANCOM, t-

test and ZIG [6] for comparing two populations. We generated a random sample n1 = 20

subjects from population 1 and n2 = 30 subjects from population 2. We considered two

different patterns of number of taxa, p = 500 or p = 1000. Since the differences among

the three statistical procedures in terms of false discovery rate (FDR) and power did not

change with p, in this study we considered only these 2 patterns of p.

For the j-th subject from the k-th population we generated an ecosystem with OTU

count A
(k)
ij for the i-th taxon using a Poisson distribution. For subjects from the first

population A
(1)
ij |µij ∼ind Poisson(µij) and for subjects from the second populations

A
(1)
ij |µij, uij ∼ind Poisson(µij + uij). In both populations µ

(k)
ij were generated indepen-
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Table S5: ANCOM analysis of Gammaproteobacteria. Models in the second step include
all main effects and the interaction of C-Section and gestational age categories which was
significant in the first step. The bacterial classes Bacilli, Clostridia, Gammaproteobac-
teria and Others are denoted by B, C, G and O, respectively. The gestational age is
denoted by GA. Significant variables at the end of second step are highlighted in gray.

Step 1 Step 2

Factor G
B

G
C

G
O

G
B

G
C

G
O

GA 0.005 0.023 0.020 0.001 0.053 0.210

Gender 0.451 0.057 0.055 0.426 0.310 0.581

C-Section 0.223 0.719 0.043 0.145 0.656 0.077

Breast milk <.0001 0.041 0.019 0.001 0.176 0.407

Day of life 0.000 <.0001 0.195 0.001 <.0001 0.180

Days on antibiotics 0.232 0.014 0.063 0.412 0.001 0.086

Sampling period 0.003 0.045 0.000 0.006 0.263 <.0001

GA∗Gender 0.031 0.137 0.004

GA∗C-Section <.0001 0.012 0.578 <.0001 0.002 0.677

GA∗Breast milk 0.084 0.141 0.181

GA∗Day of life 0.713 0.562 0.754

GA∗Days on antibiotics 0.505 0.311 0.824

dently from a gamma distribution Gamma(a, 1). We chose a to take values of 50, 200

and 10000 to represent low, medium and high abundance taxa. In the second popula-

tion uij were generated independently from a uniform distribution U(l1, u1). Thus the

mean abundance of the i-th taxon in the first population is γ
(1)
i = a and in the second

population it is γ
(2)
i = a + (l1 + u1)/2. To represent low, medium and high abundance,

we chose (l1, u1) to be (100, 150), (200, 400) and (10000, 15000), respectively.

To generate abundance of taxa at the specimen level for the j-th subject, we gener-

ated cj ∼ 1/Uniform(l2, u2), so that Y
(k)
ij = [A

(k)
ij ∗cj], where [x] denotes the integer part

of x. We considered two patterns of (l2, u2), namely, (100, 200) and (200, 500). Lastly, we

considered 5 different patterns of π the proportion of taxa with differentially abundant

means, namely, 0.05, 0.1, 0.15, 0.2 and 0.25. 100 simulated datasets were generated
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for each combination of total number of taxa and proportion of differentially abundant

taxa. We show the results for larger values of cj ((l2, u2) = (100, 200)) in the main text.

Results for smaller values of cj using 500 taxa are shown in Figure S2. We observe that

the FDR of t-test and ZIG further increased while ANCOM controlled FDR below the

nominal level.

Since the ultimate problem of interest for a biologist is to test the following hypothe-

ses:

H0 : ν
(1)
i = ν

(2)
i Ha : ν

(1)
i 6= ν

(2)
i ,

in this simulation study we estimated the FDR and power for the above hypotheses

regarding the mean abundance of taxa in the ecosystem and not regarding the mean

abundance of taxa at the specimen level. Although all analyses were performed in the

log scale, the FDR and power were computed for the original hypotheses in terms of ν-s.

Since only Y
(k)
ij are observable therefore all three tests used only Y

(k)
ij and not A

(k)
ij , which

are never observable.

Since tables of microbial count are usually sparse, often researchers perform a simple

dimension reduction to focus on a restricted group of taxa. One can summarize the

OTU tables to a taxa level and perform ANCOM on the resulting table. We applied

ANCOM to analyze the published global gut data [8] consisting of 11,905 OTUs. As

commonly done [5], we restricted the analysis to taxa that are present in at least 25%

of the samples. This is done because low frequency OTUs are often thought to be

difficult to interpret statistically. After filtering out such OTUs we discovered that

ANCOM took less than 25 minutes to process the data on a Macbook Pro (Intel Core

i7, 2.4 GHz, 16GB RAM). Although it is not a common practice to analyze all OTUs

without applying any such filters, to demonstrate the computation speed of ANCOM,

we conducted additional simulation studies using a wide range of total OTUs. For 100
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Figure S2: Comparison of False Discovery Rate (FDR) to detect differentially abundant
microbial taxa by ZIG and ANCOM, based on 100 simulated datasets consisting of 500
taxa for smaller values of cj. Values of π ranges from 0.05 to 0.25.
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simulated OTUs, ANCOM took only 4 seconds, for 1000 OTUs it took 7 minutes, for

10000 OTUs it took 3 hours. The R code to execute ANCOM can be accessed from

http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm.
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