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S| Materials and Methods

Protein Preparation. A synthetic gene encoding human K-RAS4B
(residues 1-185, bearing a single C118S mutation) was syn-
thesized (Genscript) and ligated into pET-28 vector to ex-
press the protein with a thrombin-cleavable His-tag. The RAS-
binding domains of human ARAF (ARAF-RBD, residues 17-94)
and human RAL guanine dissociation stimulator (RALGDS,
residues 741-833) were ligated into pGEX-4T2 to express a
thrombin-cleavable GST fusion protein (1). The pPGBHPS-MSP
vector encoding membrane scaffold protein (MSP) variant 1D1
(2) was obtained through AddGene. Mutagenesis was carried
out with a QuikChange Site-Directed Mutagenesis Kit (Agilent
Technologies). Protein expression was performed as described
previously (1, 3). In brief, K-RAS4B and RBDs of ARAF and
RALGDS were expressed in Escherichia coli (BL21), either in
Luria-Bertani (LB) broth or in minimal media supplemented
with 1 mg/mL >N ammonium chloride and 70 mg/mL 2-keto-
butyric acid-4-'3C to '3C label the C5 methyl groups of isoleucine
residues (4). Expressions was induced with 0.25 mM isopropyl
B-D-1-thiogalactopyranoside (IPTG) at 15 °C and an ODygqo of
0.6 for 16 h. MSP1D1 was expressed in E. coli (BL21) grown in
2x yeast extract tryptone media in a LEX bioreactor system.
Expression was induced at 37 °C with 1 mM IPTG at an ODg of
2.5 for 1 h, followed by a 2.5-h incubation period at 28 °C. Fol-
lowing affinity purification (Ni-NTA or glutathione Sepharose) the
His- or GST-tags were cleaved from K-RAS4B or ARAF and
RALGDS RBDs, respectively, with thrombin, and the His-tag
was cleaved from MSP1D1 with HRV3C protease. All proteins
were further purified by size exclusion chromatography (Superdex
75; GE Healthcare). MSP1D1 was purified in nanodisc (ND)
buffer (20 mM Tris, pH 7.4, 100 mM NaCl). K-RAS4B and the
RBDs were purified in ND buffer containing 5 mM MgCl, and
2 mM tris(2-carboxyethyl)phosphine (TCEP).

Preparation of Nanodisc-Tethered K-RAS4B and RBD Complexes.
Nanodiscs were prepared as previously described (3, 5) with a
lipid composition of 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS),
and the thiol-reactive lipid 1,2-dioleoyl-sn-glycero-3-phosphoe-
thanolamine-N-[4-(p-maleimidomethyl)cyclohexane-carboxamide]
(PE-MCC) in a molar ratio of 15:4:1 (Avanti Polar Lipids). For
PRE experiments, this was supplemented with 1,2-distearoyl-sn-
glycero-3-phosphoethanolamine-N-diethylenetriaminepentaacetic
acid [gadolinium salt; PE-DTPA (Gd>*)] to a final molar ratio of
2.5% of the total lipids. PE-MCC in preassembled, purified
nanodiscs was covalently linked to K-RAS4B as described pre-
viously (3). Nanodiscs containing K-RAS-GMPPNP were as-
sembled by preloading K-RAS4B with GMPPNP in the presence
of alkaline phosphatase and EDTA before nanodisc conjugation.
The ARAF and RALGDS RBDs were added to nanodisc-teth-
ered K-RAS4B at a molar ratio of 1.2:1, relative to K-RAS4B.
Nanodisc-tethered K-RAS4B:RBD complexes were prepared
with two isotopic labeling schemes: (i) Ile-">C5-labeled K-RAS4B
complexed with unlabeled RBD and (i) Ile-'>C8-labeled RBD in
complex with unlabeled K-RAS4B.

NMR Measurements. NMR measurements of nanodisc-bound
samples were carried out on a Bruker AVANCE II 800-MHz
spectrometer equipped with a 5-mm TCI CryoProbe, whereas a
600-MHz spectrometer equipped with a TCI 1.7-mm Micro-
CryoProbe was used to acquire spectra of nanodisc-free samples.
All spectra were collected at a temperature of 298.2 K using
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samples containing 0.6 mM K-RAS4B. All NMR measurements
were carried out in ND buffer containing 5 mM MgCl,, 2 mM
TCEP, pH 7.4, and 10% (vol/vol) D,0. {'H-'*C} HMQC spectra
were collected with 8, 32, or 128 scans for isolated K-RAS4B,
nanodisc-tethered K-RAS4B, and nanodisc-tethered K-RAS4B:
ARAF-RBD complexes, respectively. The one-dimensional
3P NMR spectra were collected with a Bruker AVANCE III
700-MHz spectrometer equipped with a 5S-mm QNP-CryoProbe
using a 30° pulse on isotopically unlabeled samples of K-RAS-
GMPPNP WT and mutants of concentration 1.5-2.0 mM at
temperatures of 278.2 and 298.2 K. The spectra were analyzed
using previously reported phosphate resonance assignments (6).
K-RAS4B isoleucine C8-methyl resonances were tentatively as-
signed based on assignments of H-RAS-GDP (kindly provided
by Sharon Campbell, University of North Carolina, Chapel Hill,
NC) and T35S H-RAS-GMPPNP [Biological Magnetic Reso-
nance Bank (BMRB) code 17610], and remaining ambiguous
assignments were resolved by mutagenesis of isoleucines 21, 36,
100, 139, and 163 to leucine residues. The ARAF-RBD iso-
leucine C8-methyl resonance assignments were transferred from
BMRB entry 11265. NMR spectra were processed with NMRPipe
(7) and analyzed with Sparky (https:/www.cgl.ucsf.edu/home/
sparky/). For PRE measurements, the resonance intensities of Ile-
C8 on PE-DTPA (Gd*")—containing nanodiscs were compared
with those of a control sample prepared without PE-DTPA (Gd**).
The cross-peak intensities were measured using Sparky by Gaussian
line fitting. The PRE and control samples were prepared at equal
concentration based on their size exclusion chromatograms and
SDS/PAGE. Any small difference in concentration was corrected by
normalization of the calculated intensity ratios against the highest
observed I*/I° (where I* is the resonance intensities of Ile-C8 on
nanodiscs incorporating 2.5% Gd**-conjugated PE-DTPA, and I° is
that in the paramagnetic ion-free nanodiscs) for each GDP and
GMPPNP plot. 184-C3, located near the nucleotide binding site,
was least affected by PRE and was therefore used as the internal
standard for normalization.

Derivation of K-RAS4B and Nanodisc Models. The structures of
K-RAS4B (residues 1-185) were annealed in Crystallography &
NMR System (CNS) (8) using the RECOORD scripts (9), with
distance, hydrogen bond, and torsion angle restraints derived
from the crystal structures of WT K-RAS4B GDP (PDB ID code
4LPK) and K-RAS4B Q61H GMPPNP (PDB ID code 3GFT).
The active structure was back-mutated to GIn61 followed by
energy minimization in CNS. The C-terminal helix was modeled
using the crystallographic information from the structure of full-
length K-RAS4B G12D (PDB ID code 4DSN). No restraints
were given to the flexible C-terminal residues (174-185) during
the simulated annealing protocol; thus, the K-RAS4B C terminus
sampled large conformational variability in the final ensemble of
structures. The starting nanodisc model for HADDOCK simu-
lations were generated by inserting a model bilayer composed of
80 lipid molecules (80% DOPC, 20% DOPS), computed via
CHARMM-GUI (10-12), into an MSP1D1 nanodisc model (13).

BLI Binding Assays. BLI assays of K-RAS4B-RBD interactions
were performed using an Octet RED96 instrument (ForteBio).
A fusion protein of GST and the RBD of ARAF (GST-ARAF-
RBD) was immobilized on anti-GST antibody-coated biosensors
in ND buffer containing 5 mM MgCl,, 2 mM TCEP, 0.1 mg/mL
BSA, and 0.002% Tween 20. A single batch of nanodiscs was
prepared, from which equal aliquots were used for conjugation
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to matched samples of WT and mutant K-RAS4B to ensure
sample consistency. Total K-RAS4B-nanodisc complexes were
monitored by absorbance at 280 nm, and the conjugation effi-
ciency was assessed by detection of unconjugated K-RAS4B
in size exclusion chromatography. The association of free and
nanodisc-conjugated K-RAS4B WT, K5N, G12D, M67C, and
D153V with the RBD was measured at a range of K-RAS4B
concentrations (0, 0.35, 0.7, 3.5, 17.5, and 35 pM) for 400 s. The
korr rates were determined by transferring the biosensor to ND
buffer for 700 s (Fig. 4 C and D and Fig. S7). Each ko and kopr
rate was determined from data obtained using analyte concen-
trations of 0.7, 3.5, and 17.5 pM, and error bars represent the SD
of three measurements of kon and kopp and propagated ac-
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cordingly for the K4 values (Fig. 4 C and D and Fig. S7). The
lowest (0.35 uM) and highest (35 pM) analyte concentrations
were excluded because low signal amplitude or fast ON rates, re-
spectively, reduced the measurement accuracy. K-RAS4B-nanodisc
complexes did not completely dissociate during this washout step,
likely due to aggregation on the biosensor; however, this effect was
identical for WT K-RAS4B and each of the mutants. The nanodisc-
tethered K-RAS4B complexes also exhibited weak (Kq = 3.5 pM)
nonspecific binding to biosensors loaded with GST in the absence
of A-RAFRBD, which was identical for WT and mutants; thus, this
background was subtracted before curve fitting (Fig. S7 C and D).
For these reasons, only relative kon, korr, and Kq values for WT vs.
mutants are reported.
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Fig. S1. 'H-'>C HMQC spectra of WT and mutant K-RAS4B and its complexes with ARAF-RBD. (A) Spectra of '3Cs-lle-labeled K-RAS4B and ARAF-RBD alone
(Upper) and in complex (Lower) in the absence of nanodiscs. Isotopic labeling scheme is indicated above each spectrum. (B) Spectra of nanodisc-conjugated

K-RAS:ARAF-RBD complexes labeled as indicated. (C) Spectra of disease associated K-RAS4B mutants (as indicated) tethered to nanodiscs.
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Fig. S2. K-RAS4B construct and cluster analysis of the final HADDOCK solutions. (A) K-RAS4B 1-185 was conjugated to a maleimide-functionalized lipid (PE-
MCC) through the C-terminal CaaX-box residue Cys185. The surface exposed Cys118 was mutated to Ser to prevent reaction with the phospholipid. Cys51 and
Cys80 are buried in the core of the protein and inaccessible to reaction with PE-MCC. (B) The final 200 K-RAS4B-nanodisc complex structures, represented on a
plot of HADDOCK score vs. RMSD to the global mean structure (defined as the structure with lowest RMSD to all other 199 structures) for GDP- (Left) and
GMPPNP-bound (Right) K-RAS4B-nanodisc simulations. Complex structures belonging to exposed and occluded clusters are highlighted in green and red,
respectively, and relative populations are indicated.
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Fig. $3. Occluded orientation of membrane-tethered K-RAS4B is incompatible with RBD binding. The K-RAS4B:ARAF-RBD complex structure (model based on
H-RAS:CRAF-RBD, PDB ID code 4GON) aligned with the lowest scored HADDOCK-driven model of nanodisc-tethered K-RAS4B-GMPPNP alone. For simplicity,
only one K-Ras molecule is shown. Note that in this orientation of K-RAS4B the RBD-binding site is blocked by steric clashes with the membrane, as illustrated
by the dashed line in the inset schematic model.

A

ARAF-RBD

K-RAS4B
o

CRAF-RBD - - - mI"RWF’ WW INVIRIN| L HBC| QP EGEAVF LHEHWKWAKLD 113
Son . v EERREHEON B AT SR VRS W 1

povedl Ay 2 Y

K-RAS4B-GMPPNP +ARAF-RBD

RMSD (R)
15 25

HADDOCK Score (a.u.)

Fig. S4. Surface electrostatics of the K-RAS4B:ARAF-RBD complex and cluster analysis of the final HADDOCK solutions of the membrane-tethered complex.
(A) Surface electrostatisc of the K-RAS4B:ARAF-RBD complex calculated as described in Fig. S2B. The predominant orientation is viewed from the membrane
interface, and residues contributing to the positively charged patch on the RBD are indicated. (Right) Sequence alignment indicating conservation of the
positively charged patch between the RBDs of ARAF and CRAF. (B) Cluster analysis of the final 200 refined models of HADDOCK simulation of K-RAS4B:ARAF-
RBD-nanodisc complex. The predominant cluster (magenta) and the minor cluster (green) represent the semiexposed and exposed orientations, respectively.
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Fig. S5. K-RAS4B shifts toward an exposed orientation on binding the RBD of RALGDS. (A) Surface electrostatics of a complex of K-RAS4B with RBD of RALGDS
(model based on PDB ID code 1LFD). The surface electrostatics were calculated as described in Fig. S2B and are viewed in the same orientation as K-RAS4B:ARAF-
RBD in Fig. S4A. (B) "H-">C HMQC spectra of nanodisc:K-RAS4B-GMPPNP:RALGDS-RBD complexes isotopically labeled as indicated. (C) Effect of RALGDS-RBD
interaction with nanodisc-tethered K-RAS4B on PRE profiles. (Upper) PRE profile of RALGDS-RBD Ile-C5 in the presence of Gd**-containing (I*) vs. Gd>*-free (I°)
nanodisc-tethered K-RAS4B-GMPPNP. (Lower) Nanodisc-tethered K-RAS4B-GMPPNP, red; nanodisc-tethered K-RAS4B-GMPPNP:RALGDS-RBD complex, green
(I* and I° as above). Residues are grouped according to their location with respect to the « and § membrane interfaces. Error bars are based on spectral noise.
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Fig. $6. Increase in the population of conformational state 1 shifts K-RAS4B toward the exposed orientation. (A) One-dimensional 3'P-NMR spectra of isolated
WT K-RAS4B, the oncogenic mutant G12D, and the state 1-selective mutant V29G, all in complex with GMPPNP, at 278.2 (Left) and 298.2 K (Right). The chemical
shift positions of the y-phosphate resonances of state 1 and 2 are highlighted with dashed lines. (B) "H-'3C HMQC spectrum of nanodisc-conjugated '>C5-lle-
labeled K-RAS4B V29G in complex with GMPPNP. (Right) Plot of PRE-induced broadening of K-RAS4B WT (red) vs. V29G (gray) resonances by Gd**-conjugated
lipid incorporated into nanodiscs, as described in Fig. 2A. Residues are grouped according to their location with respect to the a and p membrane interfaces.
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Fig. S7. Analyses of binding kinetics of free and nanodisc-tethered K-RAS4B and mutants. BLI (ForteBio Octet RED96) was used to directly measure the binding
kinetics of K-RAS4B (analyte) to immobilized ARAF-RBD (ligand). (A) Binding curves for free WT K-RAS4B and mutants binding to GST-ARAF-RBD immobilized
on an anti-GST biosensor. Relative association rates (koy), dissociation rates (korr), and dissociation constants (Ky) for free K-RAS4B binding to ARAF-RBD are
shown in Fig. 4C. (B) Binding curves for nanodisc-tethered WT K-RAS4B and mutants binding to GST-ARAF-RBD immobilized on an anti-GST biosensor. Relative
association rates (koy), dissociation rates (kore), and dissociation constants (Kg4) for nanodisc-tethered K-RAS4B binding to ARAF-RBD are shown in Fig. 4D.
(C) Specific interaction of nanodisc-tethered WT K-RAS4B (GST-ARAF-RBD immobilized on tip, black) vs. nonspecific interaction of nanodisc-tethered WT and
mutant K-RAS4B with the biosensor (GST-only immobilized on tip, colors), at the highest analyte concentration (35 pM nanodisc-conjugated K-RAS4B). Note
that the nonspecific binding of WT and mutants exhibit identical signal amplitude and kon and ko rates, indicating similar analyte concentrations. (D) Steady-
state binding analyses of specific (GST-ARAF-RBD, black) and nonspecific (GST-only, red) interaction of nanodisc-conjugated K-RAS4B with the sensor tip in a
steady-state analysis.
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Table S2. Cluster statistics of the final HADDOCK solutions for the parallel (exposed) and semiperpendicular (occluded and

semiexposed) orientations

Protein and orientation Total cluster size RMSD (A) Enb (kcal/mol)* Eelec (kcal/mol) Number of AIR violations Buried surface area (A?)
K-RASSPP
Exposed 128 3.1+0.6 -903 + 78.0 -804 + 81.6 1.6 £ 0.5 3,555 + 152.4
Occluded 66 55+ 39 -570 + 115 -503 + 116 3.4+ 21 2,488 + 507.0
K_RASGMPPNP
Exposed 63 34+24 -823 + 177 -743 + 170 1.8+ 0.9 3,088 + 649.4
Occluded 89 3.1+ 09 -820 + 115 741 + 117 27 +13 3,105 + 387.4
K-RASSMPPNPARAF-RBD
Exposed 23 35+23 -726 + 194 —633 + 180 2.5 3,294 + 550.4
Semiexposed 166 4.7 £ 1.7 —1,006 + 108 -904 + 107 4.2 7 4,004 + 409.9

Statistics are shown for the 10 lowest HADDOCK scored structures within each cluster. AIR, ambiguous interaction restraint.
*Enb (nonbonded energy) = Eelec (electrostatic energy) + Evdw (Van der Waals energy).

Table S3. PRE-induced broadening of the lle C5 probes of ARAF and RalGDS RBDs in complex with nanodisc-tethered K-RAS4B

ARAF RALGDS
K-RAS: nanodisc 154 167 176 alle Blle ylle Slle elle tlle
1° 2.08 + 0.01 1.0 + 0.01 1.39 + 0.01 0.82 +0.02 037 +0.02 278+0.02 083+0.02 146+0.02 1.0+ 0.02
I* 094 +0.01 1.0+0.01 0.10+0.01 0.76+0.01 0.34+0.01 220+0.01 0.64+0.01 1.02+0.01 1.0=0.01
1*/1° 0.44 +0.01 1.0+0.01 0.08+0.01 092+003 0.91+0.07 079+0.01 0.77+0.03 0.70+0.01 1.0+0.02

The isoleucines of RalGDS are indicated with Greek symbols as shown in Fig. S5. The peak intensities and PRE ratios are normalized with respect to lle67 and
¢lle for ARAF and RALGDS RBDs, respectively. I1° and I* are as described in Fig. 2A. Error is propagated based on spectral noise. K-RAS4B proteins were loaded

with GMPPNP.
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