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SI Methods
Are There Trends in Stock Collapses?We evaluated whether years in
which stocks underwent population collapse (population biomass
less than 25% of mean) were random across decades. For each
stock that collapsed, we identified the first year that the pop-
ulation dropped below the biomass threshold and called that the
collapse year. We tabulated the number of stocks that had col-
lapse years in each decade beginning in the 1950s and extending
to the 2000s. We then tabulated the total number of stocks for
which we had at least 5 y of population biomass estimates for each
decade. Based on these two metrics, we asked whether the col-
lapse years were distributed randomly with respect to the stock
data coverage by decade. This analysis was done using a binomial
generalized linear model with number of stock collapses and
number of stocks with data as a bivariate response variable and
decade as a categorical predictor variable. To confirm that the
results were not driven by our biomass thresholds, we repeated the
analysis for collapse thresholds equal to 50% and 15%. At the high
threshold, there was no difference in collapse frequency by decade
(P = 0.21), but at the lower threshold, we found evidence for
greater collapse frequency in 1960s and 1980s, with similar collapse
frequency in the other decades (P = 0.02). We used the same
generalized linear modeling approach to ask whether collapse
frequency varied among five main regions for which we had suit-
able population time series. There was no difference in collapse
frequency (where collapse threshold = 25% of average biomass)
among regions for either the high or low collapse threshold (P =
1.0 or P = 0.48, respectively). We repeated this analysis for even
finer-scale regional classification: Northeast Atlantic, Northwest
Atlantic, Northeast Pacific, Northwest Pacific, South Atlantic,
South Pacific, and Mediterranean. We did not have sufficient
numbers of stocks in southern hemisphere ocean basins to permit
east–west distinctions. This analysis also revealed no difference in
collapse frequency among regions (P = 0.83).
Because a few highly variable stocks might be driving trends (e.g.,

perhaps only a few stocks were sufficiently variable to have collapses
and bonanzas), we repeated this analysis with time series that were
standardized by their variance. Specifically, for each stock and year,
we calculated the log [B(t)], where B(t) is the mean-standardized
stock biomass in year t, so that increases and decreases in biomass
were on the same scale; then, we standardized the log-transformed
time series so that each had a mean = 0 and an SD = 1. Under this
data transformation, collapse threshold was set to −2. We found
evidence for significantly fewer collapses during the 1950s and the
1990s but similar frequency of collapses in all other decades (P =
0.017). There was no difference in collapse frequency by region
using either the coarse (P = 0.96) or finer (P = 0.97) regional
definitions.

What Are Characteristics of Stock Collapse? We examined temporal
dynamics of fishing and population productivity rates for stocks that
exhibited population collapses. We had at least 4 y of total pop-
ulation biomass and fishing rate estimates before collapse for 17
collapsed stocks. Fishing rate (F) was calculated as the ratio of
catch to total biomass, except for three cases where either total
biomass or catch was unavailable (Chub Mackerel Pacific Coast,
Atlantic Herring North Atlantic Fisheries Organization Area
4VWX, and Atlantic Herring International Council for the Ex-
ploration of the Sea Area VIaVIIbc). In these cases, we used the
stock assessment-based estimate of the instantaneous exploita-
tion rate (Finst; in years) to generate an approximate catch to
biomass ratio of 1 − exp(−Finst). This expression presumes that

natural mortality and somatic growth rate are approximately
equal. We then calculated the annual surplus production using
conventional methods (1–3), which follows from the population
model ΔBt=Δt= SPt −FtBt. Namely, SPt equals the difference in
biomass from year t to t + 1 plus fishery catches in year t.
This method of estimating population productivity assumes

that surplus production is independent population biomass stock
biomass. For instance, an alternative model could assume that
surplus production depends linearly on population size, so that
population dynamics are equal to

ΔBt

Δt
= ðλt −FtÞBt; [S1]

where λt is the population growth rate estimated from the ratio Bt+

1 to Bt and the rate Ft, because Bt+1 = (1 + λt − Ft)Bt, such that

λt =
Bt+1

Bt
+Ft − 1: [S2]

We used SPt instead of λt, because it produced the most conserva-
tive results (i.e., the projected benefits from setting Ft = 0 for t − 2,
t − 1, and t were even greater when we applied calculated λt values
from Eq. S2 and used those in Eq. S1).

Are Observed Minimum Stock Biomass Levels Unusual?We evaluated
whether the observed range of stock biomass levels—specifically,
the observed minimum biomass—would be expected if stocks
were fluctuating randomly with the same variance properties of
the observed stocks. Because it is not possible to model pop-
ulation trajectories by complex age- or stage-structured models
based solely on the stock assessment output that we compiled,
we, instead, adapted a simple density-independent model com-
monly used in conservation biology to assess extinction risk (4).
Namely, we characterize the observed dynamics of stock biomass
according to Eq. S1. We, therefore, calculate λt as described in
Eq. S2 and translate this into rt = ln(λt + 1). By using this for-
mulation, the expected value of Bt+T = Btexp(rT), where r is the
mean of rt. Thus, if r = 0, the expectation is no population growth
or decline. We used this model form, because it is commonly
used in simulating the probability of low population sizes and
requires the fewest number of assumptions about parameters.
Below, we describe an alternative model that is more complex,
but it assumes that production is independent of population
biomass. We use the second model only as a basis for compari-
son, because the first model (described here) provided the most
conservative results (e.g., the weakest evidence for nonrandom
fluctuations) and required the fewest assumptions.
We simulated trajectories of population growth rate based on

properties of the observed time series of rt. In this way, we can
generate biomass time series of length Tk for each of the k stocks
using Eq. S1, calculate the minimum biomass for each simulated
stock, and compare the resulting simulations to the actual data.
To generate realistic trends in simulated populations, we calcu-
lated both the spectral scaling (βr) and the SD (σr) of rt for each
stock. The former is important, because low-frequency variation
can greatly increase the range of population fluctuations (5).
Variance scales with frequency (f; in years) according to a 1/f β

law (6), and βr was estimated using the multiple segment method
to account for the short lengths of these time series (7). We only
considered stocks that had more than 32 y of biomass and fishing
rate data (40 stocks), because shorter time series cannot be used
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to reliably estimate βr. When βr was estimated to be below zero,
we set it equal to zero based on the assumption that the non-
positive value reflects the imprecision of the estimate (there
were no cases where a negative value of βr was statistically dif-
ferent from zero). We then used a 2D kernel smoother to cal-
culate the bivariate probability density surface of (βr, σr) using
the bkde2D function in the KernSmooth (8) package im-
plemented in R (9). These results are provided in Fig. S2.
Stock biomass simulation proceeded according to the following

four steps. First, σr and βr were drawn from the bivariate
smoothed density function, and a time series of rt of length 200
with equivalent βr was generated (5, 10). We scaled these draws to
have a mean of zero and an SD equal to σr. Second, we generated
the biomass time series by applying Eq. S1 and setting Ft equal to
zero. It was necessary to filter the time series at this point to en-
sure that the simulated stock biomass had similar properties
(spectral scaling and variance) as the observed time series.
Namely, we required the simulated biomass time series to have
spectral scaling between 0.5 and 3.5 and a coefficient of variation
between 0.1 and 1.25. Third, we used the final T years of the full
simulated time series as the simulated observation time series,
where T was drawn from the actual time series lengths. Each sim-
ulated time series was standardized to its mean: we expressed each
year’s stock biomass as the ratio of B to average B over the final T
years. The result of one iteration of this process is illustrated in Fig.
S2. Fourth, we calculated the minimum standardized biomass over
the last T years. These steps were repeated to generate simulated
time series of K stocks, where K is the actual number of time series
that we used in our calculations. We calculated the cumulative
probability density of minimum biomass over the K stocks and then,
repeated the entire process to generate 1,000 random cumulative
probability densities of minimum stock biomass.
We performed three checks on the simulated time series to

ensure that they adequately captured properties of the observed
time series. First, we calculated the spectral scaling of the stock
biomass time series, βB, for each stock, calculated the cumulative
density function of βB, and compared this with the range of cu-
mulative density functions of the simulated βB. Second, we per-
formed the same check on the coefficient of variation on B. We
found that the simulations matched the observed estimates well
in terms of the coefficient of variation but that the simulations
produced a narrower range of βB than was observed (Fig. S2).
Our interpretation is that fishing (which is not explicitly included
in our simulation) acts to introduce both high-frequency varia-
tion through interannual fluctuations in fishing mortality and
low-frequency variation through patterns of fishery development
and decline. Third, we also compared the range of maximum
biomasses produced by the randomization procedure with the
observed distribution of maximum biomasses and found only
small differences in the distributions.

Alternative Model. Because stock productivity is often not related
to stock biomass (3), the randomization test described above is
potentially biased. To assess this possibility, we also conducted the
same randomization test but with a different population model
that assumed that population production was independent of
population size. A typical way to evaluate productivity in fish
stocks is to calculate annual surplus production (the difference
between growth plus reproduction and mortality; e.g., SPt in Eq.
S3). In this way, surplus production is calculated from annual
changes in population size after correcting for fishery catch (Ct):
SPt = Bt+1 − Bt + Ct. Although surplus production is easily cal-
culated, it is difficult to use these in simulations, because the
values of SPt are unconstrained and thereby, can produce bi-
ologically implausible dynamics. The smallest possible rate of
decline is MBt, where M is the natural morality rate, but ran-
dom draws using spectral synthesis produce values of SPt that

are independent of stock size so that it is possible to generate
negative population biomass.
Our solution is to decompose surplus production into two

components: natural mortality (always negative) and production
(always positive; SPt = MBt + Pt). We estimated plausible values
of natural mortality, which was assumed constant across years,
whereby the loss caused by natural deaths equaledMBt. For each
stock, we used the SPt and Bt to find the best-fitting M (con-
strained to be within −0.8 to −0.2). We reasoned that Pt is not
likely to ever equal 0, and therefore, we defined an arbitrarily
small minimum value of 0.01 (units are standardized biomasses
per year). From this assumption, we found the value of M for
each stock that made the smallest Pt to be equal to 0.01. Esti-
mated values of M were between 0.2 and 0.7. This process then
produced time series of Pt for each stock, which we log-trans-
formed, and then, we estimated the SD and spectral scaling of
the log(Pt). Log transformation was necessary so that generation
of random series of log(Pt) through spectral synthesis would
produce time series of Pt that were positive. We used the kernel
density smoothers to generate (i) bivariate densities of SD and β
and (ii) univariate densities of M (Fig. S3). We used these in the
randomization test in the same manner as described above.
To ensure that the models had no long-term growth trend, we

made the mean of the simulated Pt equal to the M drawn for that
simulation. This calculation means that, at average biomass
density, mortality is perfectly matched with production. Be-
cause conversion from log(Pt) to Pt requires an adjustment to
account for the fact that log(mean of P1, P2, . . . Pn) does not equal
exp(mean of log(P1),log(P2) . . . log(Pn)), some adjusted Pt values
dropped below our minimum value of 0.01. In these cases, we
adjusted any Pt below 0.01 to equal 0.01 and then, reduced the
largest jPt by the same magnitudes (where j is the number of Pt that
had to be adjusted to meet minimum value) to ensure that the
overall mean of the Pt was unchanged. Similar to the randomiza-
tion test above, this procedure generated population dynamics with
very similar characteristics (variance and spectral scaling) as the
true population dynamics. Importantly, this more complex model
produced minimum biomass levels that were generally greater than
those produced by our base model (Fig. S3). We, therefore, con-
clude that our results are robust to the underlying assumptions
regarding the relationship between production and stock biomass.

What Are Possible Consequences of Precautionary Fishing Management?
We simulated the outcome in terms of total catch and minimum
population stock size if all fisheries adopted a policy where fishing
was suspended whenever the standardized population biomass was
below 0.5 (biomass is <50% of the mean). This simulation relied on
projecting population biomass through a population dynamics
model based on observed trends in productivity and actual fishing
rates combined with the precautionary rule. We used a model that
generated the most conservative estimate of ecological benefits
and the most liberal estimate of foregone catch by making annual
surplus production, SPt, independent of stock biomass:

Bt+1 =
�
Bt + SPt −FtBt; if Bt > 0:5
Bt + SPt; otherwise : [S3]

In all simulations, we set exploitation rate equal to the actual ex-
ploitation rate unless Bt < 0.5. Catch in any year was equal to BtFt
when Bt > 0.5, and it was Bt = 0 otherwise. Annual surplus pro-
duction was calculated from the difference in population bio-
mass from year t to t + 1 plus fishery catches in year t. We
only simulated population dynamics over a 10-y period beginning
with the first year that Bt < 0.5. We chose this short time period,
because the model was not appropriate for predicting population
biomass trajectories over long time periods.
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As a sensitivity test, we also used a density-independent model
analogous to our simulation (base) modeling:

Bt+1 =
� ð1+ λt −FtÞBt; if Bt > 0:5
ð1+ λtÞBt; otherwise : [S4]

This model predicted that, on average, the harvest rule would lead
to an overall 58% increase in landings, with a 78% increase in
minimum forage fish stock biomass. Thus, our predictions about
the ecological benefits are not particularly sensitive to the choice
of model, but our calculations of lost catches may be biased high if
production is related to stock biomass.
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Fig. S1. Relationship between surplus production and stock biomass for 44 small pelagic fish populations. Surplus production is calculated for populations for
which we have both total biomass and fishing rate or catches. Each plot represents one population, and data points represent the estimate of biomass and
surplus production for 1 y. Biomass and surplus production for each population are standardized as a proportion of long-term mean biomass.
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Fig. S2. Overview of analysis steps used to test whether magnitude, duration, and frequency of stock collapse were significantly different from random.
(A) The 2D kernel smoother fits to estimated spectral scaling (βr) and SD (σr) of population growth rate for 48 stocks having time series with more than 32 y of
biomass and fishing rate estimates (yellow indicates high density, and blue indicates low density). (B) Example results (here, for 15 stocks) of one iteration of
the randomization test used to generate random time series based on draws of βr and σr from A. Gray lines depict the full time series standardized to its mean,
and black lines depict the simulated observed time series of length T years, where T values are sampled from the actual time series lengths. (C and D) Cu-
mulative probability (Cum. probability) distribution of actual population biomass spectral scaling and coefficient of variation (CV; blue lines) and inner 95%
range of simulated time series. More information is in SI Methods.
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Fig. S3. Productivity properties and randomization test under alternative modeling framework where stock productivity is not related to stock biomass.
(A) The 2D bivariate smoothed densities of spectral scaling (βP) and SD (σP) of annual production (Pt), where Pt is the estimated new biomass generated in year t. Points
indicate estimates for individual stocks. (B) Kernel density of estimated natural mortality rates (fraction of biomass removed by natural mortality rate annually) for 48
stocks with more than 32 y of both biomass and fishing rate estimates. (C) Cumulative probability density of minimum stock biomass (blue) and inner 95% range of
cumulative probability densities generated by randomization test. Full details are in SI Methods.
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Table S1. Summary of stocks and measurements used in analysis

Common name Location/stock Scientific name Years TB/SSB Exploitation rate?

Anchovy Adriatic Sea Enrgaulis encrasicolus 1976–2007 TB Yes
Anchovy South Africa Engraulis encrasicolus 1984–2011 TB Yes
Anchovy (Anchovetta) North Central Peru Engraulis ringens 1963–2004 SSB No
Anchovy, Japanese Inland Sea of Japan Engraulis japonicus 1981–2010 TB Yes
Anchovy, Japanese Pacific Coast Engraulis japonicus 1978–2009 TB Yes
Anchovy, Japanese Tsushima Strait Engraulis japonicus 1977–2010 TB Yes
Anchovy, Northern East Pacific Engraulis mordax 1981–2009 SSB No
Capelin Barents Sea Mallotus villosus 1972–2007 TB Yes
Capelin Iceland Mallotus villosus 1979–2010 SSB No
Herring, Atlantic Gulf of Maine/Georges Bank Clupea harengus 1965–2011 TB Yes
Herring, Atlantic ICES Area 28 Clupea harengus 1977–2010 TB Yes
Herring, Atlantic ICES Area 30 Clupea harengus 1973–2010 TB Yes
Herring, Atlantic ICES Area 31 Clupea harengus 1980–2010 TB Yes
Herring, Atlantic ICES Area VIa Clupea harengus 1957–2010 TB Yes
Herring, Atlantic ICES Areas 25–32 Clupea harengus 1974–2010 TB Yes
Herring, Atlantic ICES Areas VIaVIIbc Clupea harengus 1957–2010 TB Yes
Herring, Atlantic ICES Areas VIIa-g-h-j Clupea harengus 1958–2010 TB Yes
Herring, Atlantic NAFO 4R Fall Spawners Clupea harengus 1973–2003 SSB Yes
Herring, Atlantic NAFO 4R Spring Spawners Clupea harengus 1965–2004 TB Yes
Herring, Atlantic NAFO 4T Fall Spawners Clupea harengus 1978–2007 TB Yes
Herring, Atlantic North Sea Clupea harengus 1960–2011 TB Yes
Herring, Atlantic Northern Irish Sea Clupea harengus 1961–2010 TB Yes
Herring, Atlantic Norwegian Spring Spawners Clupea pallasii 1907–2012 TB Yes
Herring, Atlantic Scotian Shelf and Bay of Fundy Clupea harengus 1965–2006 TB Yes
Herring, Atlantic NAFO 4T Spring Spawners Clupea harengus 1978–2007 TB Yes
Herring, Pacific British Columbia Central Coast Clupea pallasii 1951–2007 TB Yes
Herring, Pacific DFO Area 27 Clupea pallasii 1978–2012 SSB No
Herring, Pacific DFO Area 2W Clupea pallasii 1978–2012 SSB No
Herring, Pacific Haida Gwaii Clupea pallasii 1951–2012 SSB No
Herring, Pacific Prince Rupert District Clupea pallasii 1951–2007 TB Yes
Herring, Pacific Prince William Sound Clupea pallasii 1980–2006 TB Yes
Herring, Pacific Queen Charlotte Island Clupea pallasii 1951–2007 TB Yes
Herring, Pacific Sitka Clupea pallasii 1980–2007 TB Yes
Herring, Pacific Strait of Georgia Clupea pallasii 1951–2007 TB Yes
Herring, Pacific West Coast of Vancouver Island Clupea pallasii 1951–2007 TB Yes
Mackerel, Atlantic Gulf of Maine Scomber scombrus 1962–2008 TB Yes
Mackerel, Atlantic Northeast Atlantic Scomber scombrus 1972–2006 TB Yes
Mackerel, Cape Horse South Africa South Coast Trachurus capensis 1950–2007 TB Yes
Mackerel, Chub Northeast Pacific Coast Scomber japonicus 1929–2008 SSB Yes
Mackerel, Chub Tsushima Strait Scomber japonicus 1973–2010 TB Yes
Mackerel, Jack Chile Trachurus murphyi 1970–2010 TB Yes
Mackerel, Japanese Jack Tsushima Strait Trachurus japonicus 1973–2010 TB Yes
Menhaden, Atlantic US Mid-Atlantic Brevoortia tyrannus 1955–2011 TB Yes
Menhaden, Gulf Gulf of Mexico Brevoortia patronus 1964–2004 TB Yes
Pilchard, European ICES Areas VIIIc-Ixa Sardina pilchardus 1978–2011 SSB Yes
Pilchard, Japanese Tsushima Strait Sardinops ringens 1960–2010 TB Yes
Round herring Tsushima Strait Etrumeus teres 1976–2010 TB Yes
Sandeel North Sea Area 1 Ammodytes marinus 1983–2010 TB Yes
Sandeel North Sea Area 2 Ammodytes marinus 1983–2010 TB Yes
Sandeel North Sea Area 3 Ammodytes marinus 1983–2010 TB Yes
Sardine Adriatic Sea Sardina pichardus 1975–2007 TB Yes
Sardine South Africa Sardinops sagax 1984–2011 TB Yes
Sardine Northeast Pacific Sardinops sagax 1981–2007 TB Yes
Sprat ICES Baltic Areas 22–32 Sprattus sprattus 1974–2010 TB Yes
Sprat North Sea Sprattus sprattus 1974–2012 TB Yes

Whether exploitation rate (fraction of fish captured annually) was available is indicated. DFO, Canada Department of Fisheries and
Oceans; ICES, International Council for the Exploration of the Sea; NAFO, North Atlantic Fisheries Organization; SSB, spawning stock
biomass; TB, total biomass.
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