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S1. The Model for Two Viral Variants
We consider in detail a model for two cross-immunoreacting viral
variants u and v with different replication rates fu, fv and with the
CRN shown in Fig. 3A. In these settings the system [1] and [2]
has the following form:

_xu = fuxu − pxuru, [S1]

_xv = fvxv − pxvðβru + rvÞ, [S2]

_ru = cxu + c
αru

αru + rv
xv − bru, [S3]

_rv = c
rv

αru + rv
xv − brv. [S4]

S1.1. Stationary States and Their Stability. Without cross-reactivity
(i.e., α= β= 0), the system converges to the equilibrium solution

x∘u =
bfu
cp

, x∘v =
bfv
cp

, r∘u =
fu
p
, r∘v =

fv
p

[S5]

(Fig. S1), which was used as a benchmark for comparison with
solutions corresponding to the cases with cross-immunoreactivity.
Further, we assume that α> β≥ 0. The Jacobian of the system

is given by

Jðxu, xv, ru, rvÞ

=

0
BBBBBBBBBB@

fu − pru 0 −pxu 0

0 fv − pðβru + rvÞ −pβxv −pxv

c
αcru
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cαrvxv
ðαru + rvÞ2

− b −
cαruxv

ðαru + rvÞ2

0
crv

αru + rv

−cαrvxv
ðαru + rvÞ2

cαruxv
ðαru + rvÞ2

− b

1
CCCCCCCCCCA
.

The system [S1]–[S4] has the following stationary solutions:

i)

x*u =
b
c
ð1− αÞfu

p
, xpv =

b
c
ðα− βÞfu + fv

p
, rpu =

fu
p
, rpv =

fv − βfu
p

,

[S6]

where fv − βfu > 0 and α< 1 (Fig. S2). This solution describes
antigenic cooperation between variants u and v. Here
xpv − x∘v = ðb=cÞðα− βÞh, so v converges to the higher popula-
tion size than in solution [S5] by using the response ru. This
effect is associated with reduction of the equilibrium popu-
lation of u with respect to solution [S5].
We will prove that solution [S6] is stable when fu =

fv = f . The characteristic polynomial of Jðxpu, xpv , rpu, rpv Þ has
the form PðλÞ= λ4 − S1λ3 + S2λ2 − S3λ+ S4, where Si is the
sum of all principal i minors of Jðxpu, xpv , rpu, rpv Þ (1). Using
direct calculations, we have S1= bðð2ðβ−1Þ− αβÞ=ðα− β+ 1ÞÞ,

S2 = bf ð2+αβ− α− βÞ+ b2ððð1− αÞð1− βÞÞ=ðα− β+ 1ÞÞ, S3 =
−b2f ððð1− αÞð1− βÞð2+ α− βÞÞ=ðα− β+ 1ÞÞ, S4 = b2f 2ð1− αÞ
ð1− βÞ. By the Routh–Hurwitz criterion (1), solution [S6] is
stable, if the following conditions hold: S2, S4 > 0, S1, S3 < 0,
Δ1 =−S1S2 + S3 > 0, Δ2 = S1S2S3 − S21S4 − S23 > 0.
For Δ1 we have Δ1 = ðb2f=ðα− β+ 1ÞÞg1ðα, βÞ+ g2ðα, βÞ,

where g1ðα, βÞ=α2β2+ ð1− βÞð2αβ+ 2− βÞ− αð1− αÞð1− 2βÞ
and g2ðα, βÞ= b3ðððαβ+ 2ð1− βÞÞð1− αÞð1− βÞÞ=ðα− β+1Þ2Þ;
we have g2ðα, βÞ≥ 0. To show that g1ðα, βÞ≥ 0, note that
g1ðα, βÞ≥ ð1− βÞð2αβ+2−βÞ−αð1−αÞð1−βÞ= ð1− βÞð2αβ+
2− β− αð1− αÞÞ= g3ðα, βÞ≥ 0. Moreover, g3ðα, βÞ= 0 if and
only if β= 1. Then, with β= 1 we have g1ðα, βÞ= 0, if and only
if α= 0. According to the assumption α> β, it is impossible,
and so we have Δ1 > 0.
For Δ2 we have Δ2 = b4f 2ððð1− αÞð1− βÞÞ=ðα− β+ 1Þ2Þ

g4ðα, βÞ, where g4ðα, βÞ=ð2+ αβ− 2βÞð2+ αβ− α− β+ ðb=f Þ
ððð1−αÞð1−βÞÞ=ðα−β+1ÞÞÞð2+α−βÞ−ð2+ αβ−2βÞ2−ð1−αÞ
ð1− βÞð2+ α− βÞ2≥ ð2+ αβ− 2βÞð2+ αβ− α− βÞð2+ α− βÞ−
ð2+ αβ− 2βÞ2 − ð1− αÞð1− βÞð2+ α− βÞ2=ð1+ α− βÞðð1− αÞ
ð1− βÞ− 1Þ2 = g5ðα, βÞ≥ 0. Moreover, g5ðα, βÞ= 0 if and only
if α= 0, β= 1, or α= β= 0. The first case is impossible ac-
cording to the assumption α> β, and in the second case
Δ2 = 4b5f > 0. So we have Δ2 > 0. The stability of solution [S6]
is proved.

ii) The family of solutions parameterized by h

xpu = 0, xpv =
b
c

�
fv
p
+ ð1− βÞh

�
, rpu = h, rpv =

fv
p
− βh, [S7]

where h> 0 depends on the initial conditions and the pa-
rameters of [S1]–[S4] (Fig. S4). These solutions exist only
when α= 1 and describe the stronger form of altruistic co-
operation. The variant u is completely eliminated, but with
the same initial conditions the population of v achieves an
exponentially higher equilibrium level with respect to the
solution [S6] (Fig. S3) (according to [S6], for α< 1 the
value of xpv grows linearly with α, but for α= 1 the expo-
nential leap of xpv is observed).
If β> 0, then h≤ fv=ðβpÞ, and thus the size of the equi-

librium population of variant v is bounded by ðb=cÞðfv=βpÞ.
When β= 0, the equilibrium solution has the form

xpu = 0, xpv =
b
c

�
fv
p
+ h

�
, rpu = h, rpv =

fv
p
, [S8]

and xpv can be arbitrarily high (Fig. S4).
The Jacobian Jðxpu, xpv , rpu, rpv Þ has the following eigenvalues:

λ1 = fu− ph, λ2=ð1=2Þð−b−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−2cpβxv−2pð1−βÞbrv

p
Þ, λ3 =

ð1=2Þð−b+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 2cpβxv − 2pð1− βÞbrv

p
Þ, λ4 = 0. It implies

that the solution is unstable, if h< fu=p. So, at the stable equi-
librium, the immune response associated with u is supported
by v at a sufficiently high level.

iii) x•u = ðb=cÞðfu=pÞ, x•v = 0, r•u = fu=p, r•v = 0.
This solution describes a situation, when the mechanism of
antigenic cooperation was not involved, and variant u per-
sisted, whereas v was eliminated (Fig. S5). The matrix
Jðx•u, x•v , r•u, r•v Þ has the following eigenvalues: λ1 = ð1=2Þð−b−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4bfu

p
Þ, λ2 = ð1=2Þð−b+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4bfu

p
Þ, λ3 =−b, λ4 =

fv − βfu. We have Reðλ1Þ,Reðλ2Þ,Reðλ3Þ< 0. The solution is
stable, if fu > ð1=βÞfv (i.e., the replication rate of u is sufficiently
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high to outcompete v and overcome the effect of cross-
reactivity), and unstable, if fu > ð1=βÞfv. In particular, this
equilibrium is unstable, if β= 0.

iv)

x⋄u = 0, x⋄v =
b
c
fv
p
, r⋄u = 0, r⋄v =

fv
p
. [S9]

In this case λ1 = fu > 0 is an eigenvalue of Jðx⋄u, x⋄v , r⋄u , r⋄v Þ, and
therefore the solution is unstable.

v)

x⋄u = h, x⋄v =
b
c
fu
p
− h, r⋄u =

fu
p
, r⋄v = 0, [S10]

where 0< h< ðb=cÞðfu=pÞ is a parameter depending on the
initial conditions and parameters of [S1]–[S4]. This solution
exists only if fv = βfu.
The eigenvalues of Jðx⋄u, x⋄v , r⋄u , r⋄v Þ are the following: λ1= 0,

λ2 = ð1=2Þð−b− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ðβbfu + ð1− βÞphcÞp Þ, λ3 = ð1=2Þð−b+ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 − 4ðβbfu + ð1− βÞphcÞ
p

Þ, λ4 = ððð1− αÞbfu − cphÞ=αfuÞ.
Reðλ2Þ, Reðλ3Þ< 0. The solution is unstable, if h< ð1− αÞ
ðb=cÞðfu=pÞ.

vi)

x⋄u = 0, x⋄v =
b
c
fv
βp

, r⋄u =
fv
βp

, r⋄v = 0, [S11]

where β> 0. The Jacobian Jðx⋄u, x⋄v , r⋄u , r⋄v Þ has the following ei-
genvalues: λ1= fu− fv=β, λ2= b=α− b, λ3= ð−b+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2− 4bfv

p
Þ=2,

λ4 = ð−b+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4bfv

p
Þ=2. So, the solution is unstable, if α< 1

or β> fv=fu. The solution may be stable, only if α= 1 and β is
sufficiently small.

S1.2. Effect of Initial Population Size and Replication Rate. The
equilibrium solution [S8] is a parametric family depending on the
parameter h, which is determined by the initial conditions and
parameters of the system [S1]–[S4]. Interesting biological con-
clusions could be made by analyzing dependencies between the
equilibrium population size xpv, initial population size xvð0Þ, and
replication rate fv (with other parameters being fixed).
The relation between equilibrium population xpv and initial

value xvð0Þ is shown in Fig. S6. Interestingly, xpv is a monotonically
decreasing function of xvð0Þ.
Fig. S7 illustrates the relation between xpv and replication rate fv

and shows that when fv is bounded, then v achieves a maximum
equilibrium population size with sufficiently low replication rate.
The aforementioned observations indicate that a small repli-

cation rate and initial population size may be beneficial for a
variant with an advantageous position in the CRN. It can be
explained by the observation that longer persistence of a larger
population of u is beneficial for v, because it allows the greater
level of the immune response ru and convergence of ru to the

higher equilibrium, which, according to [S8], results in higher
value of xpv. The ability of v to stimulate ru implies that faster
replication or larger initial population of v causes faster de-
velopment of ru and earlier decline or elimination of u.

S1.3. CR and the Population Bottleneck. Every viral variant after the
initial exponential growth rapidly declines to a very low level
under the elicited immune response, which is usually followed by
the convergence to an equilibrium in damped oscillations (Figs.
S1, S2, and S4). At the end of that initial rapid decline, each
variant experiences a population bottleneck, which suggests that,
due to the discreteness of viral populations, at that moment the
variant has high chances to be completely eliminated. It is in-
teresting to note that variant v, which has an advantageous po-
sition in the CRN, has higher chances to survive a bottleneck
than the variants in the system without cross-reactivity (Fig. S8);
in particular, the value of xv at the bottleneck is 179.9 times
higher for α= 1, β= 0 and 13.6 times higher for α= 0.8, β= 0.2
than for α= β= 0.

S2. Robustness of the Model Prediction to Variation of
Parameters
To evaluate robustness of themodel predictions to slight variation
of parameters other than K, the model described by Eqs. 1 and 2
with CR-matrices [4] was simulated on 240 random CRNs with
n= 500, . . . , 1,000 vertices; K = 10; initial conditions xið0Þ= 0.01,
rið0Þ= 0.0001; and the parameters f, p, c, b, α, γ randomly chosen
from ranges f ∈ f2.25, 2.5, 2.75g, p∈ f1.75, 2.0, 2.25g, c∈ f0.1,
0.3, 0.5g, b∈ f0.01, 0.05, 0.1g, α∈ f0.4, 0.5, 0.6g, γ ∈ f1.3, 1.5, 1.7g
with uniform probabilities. Viral variants and immune responses
were assumed abolished once their values computed in the
model fell below their initial conditions.
For test cases with low immune response decay rate (b= 0.01)

all viral variants were eliminated by the immune system, in-
dicating that constant generation of new variants escaping im-
mune responses is required for the virus to survive in this case.
For higher immune response decay rates AC was observed in

95.8824% of cases. The parameters obtained in these simula-
tions are similar to those reported in Table 1 (Table S1). For
the remaining 4.1176% of cases elimination of all viral variants
was observed, indicating a role of complex combinations of
parameters and/or topologies of CRNs in the predicted in-
fection outcome.
These observations are consistent with experimental facts,

which indicate that, although arrival to negative selection at late
stages is the most frequent outcome of HCV infection, virus can
be cleared at an early stage of infection (2–4). The simulation
outcomes suggest an important role of intrahost factors repre-
sented by parameters of the model. Comprehensive analysis of
parameter space warrants further investigation.

1. Gantmacher F (2000) Matrix Theory (Am Math Soc, Providence, RI).
2. Wang CC, et al. (2007) Acute hepatitis C in a contemporary US cohort: Modes of ac-

quisition and factors influencing viral clearance. J Infect Dis 196(10):1474–1482.
3. Yeung LTF, To T, King SM, Roberts EA (2007) Spontaneous clearance of childhood

hepatitis C virus infection. J Viral Hepat 14(11):797–805.

4. Micallef JM, Kaldor JM, Dore GJ (2006) Spontaneous viral clearance following acute
hepatitis C infection: A systematic review of longitudinal studies. J Viral Hepat 13(1):
34–41.

Skums et al. www.pnas.org/cgi/content/short/1422942112 2 of 6

www.pnas.org/cgi/content/short/1422942112


0 50 100 150
0

5

10

15

20
x(1)

0 50 100 150
0

5

10

15

20
x(2)

Fig. S1. Populations of variants u and v without cross-reactivity. α= β= 0, fu = fv = 2.5, p= 2, c= 0.1, b= 0.1.
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Fig. S2. Antigenic cooperation. α= 0.6, β= 0.2, fu = fv = 2.5, p= 2, c= 0.1, b= 0.1.
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Fig. S3. Relation between x*v and α. β= 0 and 0.2, fu = fv = 2.5, p= 2, c= 0.1, b= 0.1, xuð0Þ= xvð0Þ= 0.01, ruð0Þ= rvð0Þ= 0.0001.
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Fig. S4. Strong antigenic cooperation. α= 1, β= 0, fu = fv = 2.5, p= 2, c= 0.1, b= 0.1.
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Fig. S5. Absence of antigenic cooperation. α= 0.8, β= 0.2, fu = 25, fv = 2.5, p= 2, c= 0.1, b=0.1.
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Fig. S6. x*v as a function of xvð0Þ in standard scale (Left) and logarithmic scale (Right). α= 1, β= 0, fu = fv =2.5, p= 2, c= 0.1, b= 0.1, xuð0Þ= 0.01.
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Fig. S7. x*v as a function of fv in standard scale (Left) and logarithmic scale (Right). α= 1, β= 0, fu = 2.5, p= 2, c= 0.1, b= 0.1, xuð0Þ= xvð0Þ= 0.01.
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Fig. S8. The relation between xv at the bottleneck and α. β∈ f0,0.2, 0.4g, fu = fv =2.5, p= 2, c= 0.1, b= 0.1. The value for β= 0 is shown in blue, that for β= 0.2
in green, and that for β= 0.4 in red.
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Table S1. Results of simulation of the model described by Eqs. 1
and 2 with random parameters

Rows Average values

a) 9.832 (5.1130)
b) 1.436 (0.4922)
c) 0.056 (0.158)
d) 99.944 (0.158)
e) 18.931 (8.675)
f) 0.008 (0.050)
g) 94.023 (12.256)
h) 99.973 (0.175)
i) 50.871 (7.611)
j) 99.9999 (0.0002)
k) 13.280 (3.504)

Rows a and b, percentages of persistent and altruistic variants; rows c and d,
total frequencies of immune responses associated with persistent and altruistic
variants; rows e and f, probabilities of persistence for variants adjacent and
nonadjacent to altruistic variants; row g, percentage of persistent variants
without specific immune responses; rows h and i, percentages of persistent
variants and all variants adjacent to altruistic variants; row j, total frequency of
variants adjacent to altruistic variants; row k, ratio of average in-degrees of
altruistic and nonaltruistic variants. Values in parentheses are SDs.
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