
Indismo project

User Manual

Version 1.0 (February 13, 2015) .

Centre for Health Economics Research & Modeling of
Infectious Diseases, Vaccine and Infectious Disease
Institute, University of Antwerp.

Modeling of Systems and Internet Communication,
Department of Mathematics and Computer Science,
University of Antwerp.

Interuniversity Institute for Biostatistics and statistical
Bioinformatics, Hasselt University.

L.Willem, S.Stijven, & J.Broeckhove

Contents

1 Introduction 2

2 Software 4
2.1 System Requirements . 4
2.2 Installation . 4
2.3 Documentation . 5
2.4 Directory layout . 6
2.5 File formats . 7
2.6 Testing . 7
2.7 Results . 7
2.8 Sim Wrapper . 7

3 Simulator 8
3.1 Workspace . 8
3.2 Run the simulator . 10
3.3 Sim Wrapper . 10

CHAPTER 1

Introduction

This manual provides a brief description of the indismo software and its features.
Indismo is an open source individual-based modeling system for close-contact dis-
ease transmission developed by researchers at the University of Antwerp and Has-
selt University, Belgium. The simulator uses census-based synthetic populations
that capture the demographic and geographic distribution, as well as detailed social
networks. The software provides data structures and algorithms to model disease
spreading in synthetic populations to compare and discuss model performance. In-
dismo is open source in the hope of making large-scale individual-based epidemic
models more useful to the community. More info on the project and results obtained
with the software can be found in the paper: “Optimizing Stochastic Individual-
Based Models for Infectious Diseases” from Willem et al (2014).

The model population consists of households, schools, workplaces and districts,
which represent a group of people we define as a “cluster”. Social contacts can only
happen within a cluster. At night, people are present in their household and home
district and can make social contacts with the other members. During daytime,
people can be assigned to a workplace or school in a specific district or stay at
home.

We use a Simulator class to organize the activities from the people in an Area.
The Area class has a Population, different Cluster objects and a Contact Handler.
The Contact Handler performs Bernoulli trials to decide whether a contact between
an infectious and susceptible person leads to disease transmission. People transit
through Susceptible-Exposed-Infected-Recovered states, similar to an influenza-like
disease. Each Cluster contains a link to its members and the Population stores all
person data.

3

The indismo software contains three core implementations of individual-based
simulators:

FLUTE
Implementation based on the open source model from Chao et al. [?]. The
Area contains only clusters at the district level. The household and workplace
or school ID needs to be checked whether two district members make extra
contact. The Population is a collection of Person objects.

FRED
Implementation based on the open source model from Grefenstette et al. [?].
The household, workplace and school clusters are handled separately from the
district clusters, which are only used to model general community contacts.
The Population is equally structured as in FLUTE.

SID
Similar cluster structure as FRED but with an innovative data-layout in Pop-
ulation. The Population does not uses Person objects, but has a separate
container for each person feature.

Next to the above described core differences, two algorithmic approaches are
incorporated into the software to handle social contacts: with and without sorting
the cluster members on health state. In total the indismo software enables the
comparison of six different implementations.

CHAPTER 2

Software

2.1 System Requirements

Indismo is written in C++ and portable over all platforms that have the GNU C++
compiler. De software has no dependencies on external libraries. The following tools
needs to be installed:

• g++
• make
• CMake
• Python (optional)
• Doxygen (optional, for documentation)
• LaTeX (optional, for documentation)

2.2 Installation

To install the project, first obtain the source code by cloning the repository to
a directory (e.g. “git clone https://bitbucket.org/indismo/indismo”) or download
a zip file with all project material from the Bitbucket website and de-compress
the archive. <<released after acceptance of the paper>> The build system for
indismo uses the CMake tool. This is used to build and install the software at a
high level of abstraction and almost platform independent (see http://www.cmake.

org/). The project includes the conventional make targets to “build”, “install”,
“test” and “clean” the project. There is one additional target “configure” to set
up the CMake/make structure that will actually do all the work. For those users
that do not have a working knowledge of CMake, a front end Makefile has been

http://www.cmake.org/
http://www.cmake.org/

2.3. DOCUMENTATION 5

provided that invokes the appropriate CMake commands. More details on building
the software can be found in “INSTALL.txt” in the source folder.

2.3 Documentation

The Application Programmer Interface (API) documentation is generated automat-
ically using the Doxygen tool from documentation instructions embedded in the
code (see www.doxygen.org). The developer documentation or reference is written
in Doxygen syntax and also generated to html format. Figure 2.1 presents the start-
ing page of the API documentation. The user manual has been written in LATEX(see
www.latex-project.org) and is generated to PDF format.

Figure 2.1: Screenshot of the main page of the API documentation generated with
the Doxygen tool. The menu on the left provides access to documentation for indi-
vidual classes.

www.doxygen.org
www.latex-project.org

2.4. DIRECTORY LAYOUT 6

2.4 Directory layout

The project directory structure has been designed systematically with a layout fol-
lowing maven conventions. The directory layout is represented in Figure 2.2

Everything used to generate project artefacts is placed in directory src:
• code related files (sources, third party libraries and headers, ...) in directory
src/main

– for each language the sources in src/main/"language"...

– third party resources in src/main/resources.
• documentation files (api, manual, html, pdf and text ...) in directory src/doc

– for each document processing tool a sub directory src/doc/"tool"...

• test related files (scripts, regression files, ...) in directory src/test

Every artefact is generated in directory target or its sub directories during the
build procedure and is completely removed when the project is cleaned.

Figure 2.2: Screen shot of the main directory with the indismo source code.

2.5. FILE FORMATS 7

2.5 File formats

The indismo software supports two file formats:

CSV or comma separated values, used for population input data and the simulator
output.

JSON or JavaScript Object Notation, an open standard format that uses human-
readable text to transmit objects consisting of attribute-value pairs.
(see www.json.org)

2.6 Testing

Using Google’s gtest framework and CMake’s ctest tool, unit tests and install
checks have been added to indismo. In addition, the code base contains assertions
to verify the simulator logic. They are activated when the application is built and
executed in debug mode and are helpful in catching errors at run time.

2.7 Results

The software generates two files:

Log contains the cumulative number of cases per day.

Output contains aggregated results on the number of cases, configuration details
and timings.

2.8 Sim Wrapper

The different model implementations have been captured into a single binary. This
makes it possible to build wrappers in Python. A wrapper object can forward
configurations to the C++ binary and merges the resulting output.

www.json.org

CHAPTER 3

Simulator

3.1 Workspace

By default, indismo is installed in target/installed/ inside de project directory
though this can be modified using the CMakeLocalConfig.txt file (example is given
in src/main/resources/make). Compilation and installation of the software will
create the following files and directories: (illustrated in Figure 3.1):

• Binaries in directory bin

– gtester: regression tests for the sequential code.
– gtester omp: regression tests for the OpenMP code.
– indismo: sequential executable.
– indismo omp: OpenMP executable.
– indismo r0: executable to measure the basic reproduction number (R0).
– sim wrapper.py: the Python simulation wrapper (see section 2.8)

• Configuration files (json) in directory config

– config ar brooklyn.json: configuration file for the sim wrapper to perform
Brooklyn simulations with different clinical attack rates.

– config ar nassau.json: configuration file for the sim wrapper to perform
Nassau simulations with different clinical attack rates.

– config ar nassau.json: default configuration file for the sim wrapper with
basic settings.

– config pop brooklyn.json: configuration file for the sim wrapper to per-
form Brooklyn simulations using population files with a randomized,
sorted and original RTI person sequence.

– config pop nassau.json: configuration file for the sim wrapper to perform
Brooklyn simulations using population files with a randomized, sorted
and original RTI person sequence.

3.1. WORKSPACE 9

• Input data files (csv) in directory data

– brooklyn synt pop original: Synthetic population data extracted from
The 2010 U.S. Synthetic Population Database (Version 1) from RTI In-
ternational for Brooklyn, New York [? ?]. The original person ordering
is retained.

– brooklyn synt pop randomized: Synthetic population data for Brooklyn
in a randomized order.

– brooklyn synt pop sorted: Synthetic population data for Brooklyn sorted
according to day cluster (first) and household (second).

– nassay synt pop original: Synthetic population data extracted from The
2010 U.S. Synthetic Population Database (Version 1) from RTI Interna-
tional for Nassau, New York [? ?]. The original person ordering is
retained.

– brooklyn synt pop randomized: Synthetic population data for Nassau in
a randomized order.

– brooklyn synt pop sorted: Synthetic population data for Nassau sorted
according to day cluster (first) and household (second).

• Documentation files (api, manual, html, pdf and text ...) in directory doc

– Refrence manual (see section 2.3)
– User manual

Figure 3.1: Screen shot of the workspace directory.

3.2 Run the simulator

From the workspace directory, the simulator can be started with default configura-
tion using the command “./bin/indismo”. Settings can be passed to the simulator
using one or more command line arguments:

-m or --model Model you want to run: “flute”, “flute sort”, “fred”, “fred sort”,
“sid”, “sid sort”

-o or --output prefix Prefix for the output files, by default a time stamp.

-p or --population file Population file.

-r or --r0 Basic reproduction number: the number of secondary cases by a typical
primary case in a complete susceptible population.

-n or --rng seed Random number generator seed.

-s or --seeding rate Epidemic seeding rate: fraction of initially infected people to
start the epidemic.

-t or --transmission rate Transmission Rate: the probability that an infection
is transmitted during a contact between two adults (+18 years) in the same
social contact cluster.

-d or –days Number of days to simulate.

3.3 Sim Wrapper

A Python wrapper is provided to perform multiple runs with the C++ executable.
The wrapper forwards the model configurations with command line arguments and
merges the output. The wrapper is designed to be used with .json configuration files
and examples are provided with the source code. E.g
“./bin/sim wrapper -- config ./config/config ar nassau.json”
will start the simulator with each configuration in the file illustrated in Figure 3.2. It
is important to note the input notation: values given inside brackets can be extended
(e.g. “rng seeds”=[1,2,3]) but single values can only be replaced by one other value
(e.g. “days”: 100).

Figure 3.2: Screen shot of a json configuration file for the Python sim wrapper.

	Introduction
	Software
	System Requirements
	Installation
	Documentation
	Directory layout
	File formats
	Testing
	Results
	Sim Wrapper

	Simulator
	Workspace
	Run the simulator
	Sim Wrapper

