
Additional file 4 : Hardware specifications and extra results.
This additional file presents the hardware specifications of the used platforms and

extra results in addition to the figures in the text. Figure S1 presents all benchmarks

with the sequential models for the Nassau and Brooklyn population on CPU type 1.

Figure S2 and S3 present similar results for CPU type 2 and 3 respectively. Figure

S4 shows the run time according to the number of threads on CPU type 1 for all

models with the brooklyn population. Figure S5 presents the OpenMP results for

CPU type 2.

Hardware specifications
Name CPU type 1 CPU type 2 CPU type 3
Configuration Cluster Desktop Cluster
CPU type Intel R� Xeon R� CPU E5-2680V2 Intel R� Xeon R� W5580 AMD Opteron R� 6274
CPU speed 2.8 GHz 3.20 GHz 2.2 GHz
CPU cores 20 (2x10) 4 64 (4x16)
RAM 64 GB 24 GB 192 GB
L1 cache 10x64 KB 4x64 KB 16x48 KB
L2 cache 10x256 KB 4x256 KB 16x1024 KB
L3 cache 25 MB 8 MB 16 MB
Compiler GNU gcc 4.8.2 GNU gcc 4.8.1 GNU gcc 4.8.1
Platform Red Hat 4.4.7-3 Ubuntu 12.04.4 LTS Ubuntu 12.04.1 LTS

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
20

40
60

80
10

0
12

0

Attack rate

R
un

 ti
m

e
(s

)

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

(a) FLUTE, Nassau.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
50

10
0

15
0

20
0

Attack rate

R
un

 ti
m

e
(s

)

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

(b) FLUTE, Brooklyn.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
20

40
60

80
10

0
12

0

Attack rate

R
un

 ti
m

e
(s

)

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

(c) FRED, Nassau.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
50

10
0

15
0

20
0

Attack rate

R
un

 ti
m

e
(s

)

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

(d) FRED, Brooklyn.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
20

40
60

80
10

0
12

0

Attack rate

R
un

 ti
m

e
(s

)

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

(e) SID, Nassau.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
50

10
0

15
0

20
0

Attack rate

R
un

 ti
m

e
(s

)

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

(f) SID, Brooklyn.

Figure S1: Run time according to attack rate for Nassau and Brook-

lyn simulations on CPU type 1.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Attack rate

R
un

 ti
m

e
(s

)
Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

(a) FLUTE, Nassau.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
20

0
40

0
60

0
80

0

Attack rate

R
un

 ti
m

e
(s

)

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

(b) FLUTE, Brooklyn.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Attack rate

R
un

 ti
m

e
(s

)

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

(c) FRED, Nassau.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
20

0
40

0
60

0
80

0

Attack rate

R
un

 ti
m

e
(s

)
Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

(d) FRED, Brooklyn.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Attack rate

R
un

 ti
m

e
(s

)

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

(e) SID, Nassau.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
20

0
40

0
60

0
80

0

Attack rate

R
un

 ti
m

e
(s

)

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

(f) SID, Brooklyn.

Figure S2: Run time according to attack rate for Nassau and Brook-

lyn simulations on CPU type 2.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
50

0
10

00
15

00

Attack rate

R
un

 ti
m

e
(s

)

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

(a) FLUTE, Brooklyn.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
50

0
10

00
15

00

Attack rate

R
un

 ti
m

e
(s

)

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

(b) FRED, Brooklyn.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
50

0
10

00
15

00

Attack rate

R
un

 ti
m

e
(s

)

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

Basic algorithm
Sort algorithm
Randomized population
Structured population

(c) SID, Brooklyn.

Figure S3: Run time according to attack rate for Nassau and Brook-

lyn simulations on CPU type 3.

1
2

3
4

Threads

Sp
ee

du
p

(T
1 /

 T
i)

1 5 10 15 20

Basic algorithm
Sort algorithm
Schedule: dynamic (1)
Schedule: dynamic (10)
Schedule: static (1)
Schedule: static (10)

(a) FLUTE, sorted population.

1
2

3
4

Threads

Sp
ee

du
p

(T
1 /

 T
i)

1 5 10 15 20

Basic algorithm
Sort algorithm
Schedule: dynamic (1)
Schedule: dynamic (10)
Schedule: static (1)
Schedule: static (10)

(b) FLUTE, randomized population.

1
2

3
4

Threads

Sp
ee

du
p

(T
1 /

 T
i)

1 5 10 15 20

Basic algorithm
Sort algorithm
Schedule: dynamic (1)
Schedule: dynamic (10)
Schedule: static (1)
Schedule: static (10)

(c) FRED, sorted population.

1
2

3
4

Threads

Sp
ee

du
p

(T
1 /

 T
i)

1 5 10 15 20

Basic algorithm
Sort algorithm
Schedule: dynamic (1)
Schedule: dynamic (10)
Schedule: static (1)
Schedule: static (10)

(d) FRED, randomized population.

1
2

3
4

Threads

Sp
ee

du
p

(T
1 /

 T
i)

1 5 10 15 20

Basic algorithm
Sort algorithm
Schedule: dynamic (1)
Schedule: dynamic (10)
Schedule: static (1)
Schedule: static (10)

(e) SID, sorted population.

1
2

3
4

Threads

Sp
ee

du
p

(T
1 /

 T
i)

1 5 10 15 20

Basic algorithm
Sort algorithm
Schedule: dynamic (1)
Schedule: dynamic (10)
Schedule: static (1)
Schedule: static (10)

(f) SID, randomized population.

Figure S4: Speedup according to thread number and scheduling for

Brooklyn simulations on CPU type 1 Timing are shown for the basic and

sort algorithm with dynamic and static parallel scheduling using workload

chunk size of 1 and 10 clusters.

1.
0

1.
5

2.
0

2.
5

3.
0

Threads

Sp
ee

du
p

(T
1 /

 T
i)

1 2 3 4

Basic algorithm
Sort algorithm
Schedule: dynamic (1)
Schedule: dynamic (10)
Schedule: static (1)
Schedule: static (10)

(a) FLUTE, sorted population.

1.
0

1.
5

2.
0

2.
5

3.
0

Threads

Sp
ee

du
p

(T
1 /

 T
i)

1 2 3 4

Basic algorithm
Sort algorithm
Schedule: dynamic (1)
Schedule: dynamic (10)
Schedule: static (1)
Schedule: static (10)

(b) FLUTE, randomized population.

1.
0

1.
5

2.
0

2.
5

3.
0

Threads

Sp
ee

du
p

(T
1 /

 T
i)

1 2 3 4

Basic algorithm
Sort algorithm
Schedule: dynamic (1)
Schedule: dynamic (10)
Schedule: static (1)
Schedule: static (10)

(c) FRED, sorted population.

1.
0

1.
5

2.
0

2.
5

3.
0

Threads

Sp
ee

du
p

(T
1 /

 T
i)

1 2 3 4

Basic algorithm
Sort algorithm
Schedule: dynamic (1)
Schedule: dynamic (10)
Schedule: static (1)
Schedule: static (10)

(d) FRED, randomized population.

1.
0

1.
5

2.
0

2.
5

3.
0

Threads

Sp
ee

du
p

(T
1 /

 T
i)

1 2 3 4

Basic algorithm
Sort algorithm
Schedule: dynamic (1)
Schedule: dynamic (10)
Schedule: static (1)
Schedule: static (10)

(e) SID, sorted population.

1.
0

1.
5

2.
0

2.
5

3.
0

Threads

Sp
ee

du
p

(T
1 /

 T
i)

1 2 3 4

Basic algorithm
Sort algorithm
Schedule: dynamic (1)
Schedule: dynamic (10)
Schedule: static (1)
Schedule: static (10)

(f) SID, randomized population.

Figure S5: Run times according to thread number and scheduling

for Brooklyn simulations on CPU type 2 Timing are shown for the

basic and sort algorithm with dynamic scheduling using workload chunk size

of 1.

