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Materials and Methods 

Computational Model 

As mentioned in the main text, the neuron model is based on the Izhikevich equations1. This 

model depends on four parameters, which allow to reproduce the spiking and bursting behavior of 

specific types of cortical neurons. From a mathematical point of view, the model is described by a 

two-dimensional  system of ordinary differential equations1: 

𝑑𝑣

𝑑𝑡
= 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼𝑡𝑜𝑡        (1) 

𝑑𝑢

𝑑𝑡
= 𝑎(𝑏𝑣 − 𝑢)           (2) 

with the after-spike resetting conditions: 

𝑖𝑓 𝑣 ≥ 40𝑚𝑉 → {
𝑣 ← 𝑐

𝑢 ← 𝑢 + 𝑑
         (3) 

In Equations (1-3), v is the membrane potential of the neuron, u is a membrane recovery variable 

which takes into account the activation of K+ and inactivation of Na+ channels. 

Equation (4) displays the used values for the four parameters. 
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In Eqs. (4), the first row relates to the excitatory (regular spiking, RS), while the second one to the 

inhibitory (fast spiking, FS) neurons. Although we used the class of RS and FS models, we 

introduced per each neuron a random variable ri (which spans from 0 to 1) in order to introduce a 

further variability in the neuron dynamics: a RS neuron is obtained if ri = 0, whereas if ri = 1, a 

bursting neuron is obtained. Such distribution is biased towards RS neuron. 

To model the morphological network connectivity, we made extensive use of graph theory2. 

Briefly, all graphs are composed by nodes which represent the neurons and edges which model the 

morphological connections among the neurons. If edges take into account the directionality of the 

connection (i.e., from a pre- to a post-synaptic neuron), the graph is named directed, otherwise it is 

called undirected. The structure of the graph is described by the adjacency matrix, a square 

symmetric matrix of size equal to the number of nodes N with binary entries. If the element aij = 1, 

a connection between the node j to i is present, otherwise aij = 0 means no connection. All the auto-

connections (aii = 1) are avoided. Then, the value 1 of the non-zero aij elements are substituted with 

numbers representing the different synaptic weights drawn from a normal distribution. To model the 

dynamics of the network, each node of the graph is “replaced” by a neuron model, whose dynamics 

is simulated according to the Izhikevich equations (see Eqs. 1-2). Graphs are topologically 
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characterized by evaluating the path length (L), the clustering coefficient (C), and the connectivity 

degree (D).  

A path is an ordered sequence of distinct edges and nodes that link a source node j to a target i: 

thus the path length L is the minimum number of distinct connections to reach i from j. The 

clustering coefficient Ci of a generic node i is evaluated as the ratio between the sum of the 

connections (with directionality) existing among the neighbors of node i and the sum of all nodes 

linked to i (without directionality). Ci lies between 0 and 1 and typically it is averaged over all 

nodes of the graph to obtain the mean clustering coefficient or the graph clustering coefficient. 

The connectivity degree, or degree for short, Di of a node i is the sum of all the incoming and 

outcoming connections. By averaging over the entire graph, we obtained the so called average 

degree. 

A graph can be created according to different algorithms and can assume different properties in 

terms of the aforementioned metrics. Here below, we provided a description of the architectures 

used to model the connectivity of in vitro cortical networks, namely random (RND)3, scale-free 

(SF)4, and small-world (SW)5. 

Random Network. The model of RND network implemented in this work follows the original one 

devised by Erdõs and Renyi3. The fundamental assumption of random networks is that, despite the 

random placement of links, the correspondent graph is characterized by a uniform connection 

probability and a Poissonian degree distribution. The independent variables for building up a 

random graph are the number of nodes N and the total number of edges, with the condition that the 

minimum number of edges must be 𝑁 ∙ 𝑙𝑜𝑔
𝑁

2
. In its original formulation, the random algorithm was 

characterized by an evolution process, where, starting from N isolated nodes, subsequent random 

edges were added6. In our implementation, a random graph is chosen at random from the set of all 

symmetric graphs with N nodes and m edges. 

Scale-Free Network. In SF networks4 the degree distribution follows a power-law: thus, if m is the 

number of edges which incident to a node (i.e. the connectivity degree), the power-law distribution 

is given by7: 

𝑃(𝑚) = 𝑚−𝛾            (5) 

where in neuronal systems the characteristic exponent  usually lies between 1.3 (slice recordings 

[7]) and 2 (fMRI recordings [5]). To build a SF network, we made use of the algorithm described 

in8, that has been proved to be efficient in terms of computation when dealing with large-scale 

networks. Nodes are added one by one successively. For each added node, m edges are generated, 



4 

 

where m is the minimum node degree. The endpoints are selected from the nodes whose edges have 

already been created, with a bias towards high degree nodes. 

Small-World Network. The term small-world (SW) was coined by Milgram9 with reference to 

social networks in which a person reaches any other person with a relatively short number of links 

(i.e., the so called “six degrees of separation” problem9). More recently, Watts and Strogatz5 

formalized and studied the features of this network topology. A SW graph lies in between a 

condition of regular lattice and randomness. In fact, by increasing the probability p of rewiring, the 

order of a regular lattice is disrupted, and when p = 1 a random graph is generated. Increasing the 

probability of rewiring, both the characteristic path length L and the clustering coefficient C 

decrease. In our case SW networks are obtained with a one-dimensional network made up of N 

neurons with connections between the k nearest and the next-nearest neighbors. Then, each link is 

rewired with a given probability p (i.e., shifting one end of the bond to a new node chosen at 

random from the whole system) with the constraint that no vertex can have a link with itself5. In the 

presented simulations, we set such a value to 0.5. It is worth noticing that similar results can be 

achieved when 0.4  p < 1.0. 

If we consider RND, SF, and SW networks with the same average degree, the following 

relationships among the aforementioned metrics hold6: 

𝐶𝑆𝑊 ≈ 𝐶𝑅𝐸𝐺 > 𝐶𝑅𝑁𝐷           (6a) 

𝐿𝑆𝑊 ≈ 𝐿𝑅𝑁𝐷 > 𝐿𝑆𝐹           (6b)
 

where the subscript “REG” indicates a regular network. In this topology, each node is only 

connected to the neighbors and has the same number of links which implies a high degree of 

clusterization.
 

Cell culture 

Dissociated cortical neurons were extracted from rat embryos and plated onto 60 planar TiN/SiN 

micro-electrodes (30 µm diameter, 200 µm spaced) at the density of 5-8 × 104 cells/device, which 

means about 1200 - 1400 cells/mm2 (Fig. S1a). The procedure was approved by the European 

Animal Care Legislation and by the guidelines of the University of Genova. Micro-Electrode 

Arrays (MEAs) are coated with adhesion promoting molecules (poly-D-lysine and laminin). 

Neurons are maintained in culture dishes, each containing 1 ml of nutrient medium (i.e. serumfree 

Neurobasal medium supplemented with B27 and Glutamax-I) and placed in a humidified incubator 

having an atmosphere of 5% CO2 at 37 °C. Further details can be found in10. 
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Experimental setup and Electrophysiology 

Electrophysiological activity was recorded during the third-fourth week in vitro to allow the 

maturation of the network11. The experimental set-up is based on the MEA60 System (Multi 

Channel Systems, MCS, Reutlingen, Germany) consisting of a mounting support with integrated 60 

channels pre- and filter amplifier (gain 1200×) and a personal computer equipped with a PCI data 

acquisition board for real time signal monitoring and recording. The electrophysiological activity 

was recorded without any chemical or electrical stimulation (i.e., spontaneous activity). The 

recorded signals ranged from random spike activity to more complicated and synchronized burst 

signals, as depicted in Fig. S1b and c. Raw signals were recorded and sampled at 10 kHz, and data 

were then processed off-line by using a custom software to extract the spike trains (see Data 

Analysis).  

Dataset 

The dataset consists of n = 10 cortical cultures recorded for periods of at least 1 hour each, from 21 

days in vitro (DIVs) to 35 DIVs. 

 

Figure S1. MEA and electrophysiological signals overview. a) Dissociated cortical culture at mature stage of 

development (27 DIV). b) Example of a burst (top) and a spike (down) recorded by one electrode. c) 60 seconds of 

spontaneous activity. Each row corresponds to a recording site, while each dot corresponds to a detected spike. 

Data analysis 

Experimental data were processed off-line by using a custom software package12 developed in 

MATLAB (The Mathworks, Natick, MA, USA). 

Spike detection. Extracellularly recorded spikes were detected using the PTSD (Precise Timing 

Spike Detection) algorithm13. Briefly, spike trains were built using three parameters: (1) a 

differential threshold set to 8 times the standard deviation of the baseline noise independently for 

each channel; (2) a peak lifetime period (set at 2 ms); (3) a refractory period (set at 1 ms). The data 

presented in the text were not spike sorted. This choice was made according to the fact that during a 
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burst a global increase of the activity produces a fast sequence of spikes with different and 

overlapping shapes which make the sorting difficult and unreliable14. 

Simulated data have been peak detected by means of a simple hard-threshold spike detection 

algorithm. In our simulations, we set the threshold value at 0 mV. 

Burst detection. Both experimental and simulated data have been burst detected by means of the 

algorithms devised in15. Briefly, Detected bursts are sequences of spikes having an ISI smaller than 

a reference value (set at 100 ms in our experiments and simulations), and containing at least a 

minimum number of consecutive spikes (set at 5 spikes in our experiments and simulations). 

For all the simulations, we first computed the mean firing rate (MFR), mean bursting rate (MBR), 

burst duration (BD), inter burst interval (IBI). Then, to characterize the interdependency between 

dynamics and connectivity, we focused on: (i) cross-correlation, to evaluate the degree of 

synchronization among the neurons; (ii) neuronal avalanches, to determine whether or not the 

system can be considered in critical state16. 

Cross-correlation, coincidence index. The cross-correlation (CC) function17 was built by 

considering the spike trains (X and Y) of two neurons. It measures the frequency at which one cell 

fires (target) as a function of time, relative to the firing of a spike in another cell (reference) within 

a time frame around the spikes of the X train of ±T (T = 150 ms). Mathematically, CC is defined as: 

𝐶𝑋𝑌(𝜏) =
1

√𝑁𝑋𝑁𝑌
∑ 𝑋(𝑡𝑠)𝑌(𝑡𝑠 − 𝑡𝑖)

𝑡𝑖=(𝜏+
∆𝜏

2
)

𝑡𝑖=(𝜏−
∆𝜏

2
)

        (7) 

In Eq. (7),  is the time shift or time lag (set at 1 ms) and ts indicates the timing of an event in the 

X train. The corrected Cxy(τ) is obtained by means of a normalization procedure: each element of the 

array is divided by the square root of the product between the number of peaks in the X (NX in Eq. 

7) and the Y (NY in Eq. 7) train18. The CC function was evaluated by considering all pairs of neurons 

in the network. From the CC function, we extracted the coincidence index (CI0) which is defined as 

the ratio of the integral of the CC function in a specified area (± 1ms) around the zero bin to the 

integral of the total area. This parameter allows to quantify the degree of synchronization of the 

neurons in the networks10. 

Inter-event interval (IEI). Considering the electrophysiological activity of the whole network, we 

derived the probability density of time intervals between successive spikes occurring at all the 

neurons, namely the inter-event interval (IEI) distribution16. Computing the average value of the IEI 

distribution, we obtained for every simulated network an estimate of the average time between two 

successive activations of any pair of neurons (Fig. S2). The average IEI was obtained by calculating 

the average value of the IEI distribution over the time interval [0, 100 ms]. The maximum value of 

the selected interval was determined as the average time interval corresponding to more the 99% 
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(99.87% for the SF and 99.52%, for the RND networks) of the area of the mean cross-correlogram 

(averaging cross-correlograms between all possible pairs of electrodes)16. 

Fig. S2a shows the IEI distribution (only the first 10 ms) for two representative realizations of 

Net_3. By averaging values over all network realizations, we derived the IEI mean values reported 

in Fig. S2b (mean ± standard deviation). It can be noticed how SF and RND networks show 

remarkable differences, especially at an intermediate range of connectivity degree (i.e., from Net_3 

to Net_7), where the obtained values result statistically different (p < 0.05, Kruskal-Wallis non-

parametric test). In this interval, SF networks present IEIs of about 3.5 ms, while the corresponding 

RND ones show IEI values of about 1.7 ms. On the contrary, at lower and higher degrees of 

connectivity, IEI values showed by the two topologies are not statistically different. 

 

Figure S2. Inter-event interval (IEI) distributions. a) IEI distributions evaluated for two realizations of Net_3: SF and 

RND values are plotted in light and dark grey respectively. b) IEI of SF (grey) and RND (black) networks (mean ± 

standard deviation, *p < 0.05). 

Avalanche detection. Following the pioneer works of Beggs and Plenz16,19, a neuronal avalanche is 

defined as an event of widespread spontaneous electrical activity, preceded and followed by a silent 

period. Recordings are divided into time windows of duration Δt (called bins); inside each bin the 

spatial distribution of activity over the network represents a frame. A frame, which does not contain 

any spike, is called a blank frame. A neuron is active in a time bin Δt if, at least one spike is 

recorded, within that time window. Thus, a frame is active if, at least, one electrode is active. 

Following these definitions, a neuronal avalanche is a continuous sequence of active frames, 

preceded and followed by at least one blank frame (Fig. S3a). Without loss of generality, the time 

window used to bin the spiking activity was adjusted for each simulation according to the signal’s 

timescale (i.e. average inter-event interval (IEI)). 

Avalanches are usually characterized by their size: in this work, we defined the size of an avalanche 

as the number of neurons (or electrodes when experimental recordings are considered) being active 
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at least once within the avalanche. From the simulated spike trains, we computed neuronal 

avalanches and we estimated the probability density function (PDF) of avalanche sizes, as the 

relative frequency histogram, in which the height of each bar represents the proportion of 

avalanches of a given size. We also computed the complementary cumulative distribution function 

(CDF), which describes the probability that a random variable X with a given probability 

distribution is found at a value greater than or equal to x, (i.e., 𝑃(𝑥) = Pr (𝑋 ≥ 𝑥)). 

 

Figure S3. Sketches illustrating the algorithms used to detect neuronal avalanches and perform power-law fitting 

assessment. a) Avalanche detection algorithm. b) Fitting procedures used to assess the presence of a power-law 

distribution. 

Model distributions 

The statistically significance of the computed power-law distributions have been performed by 

following the procedures proposed by Clauset et al.20: after the evaluation of the goodness-of-fit, we  

compared the power-law model accuracy with alternative distribution models (namely power-law 

with exponential cut-off, exponential, and log-normal). Fig. S3b illustrates the aforementioned steps 

used to assess the presence of a power-law distribution. Here below, a description of the model 

distributions is provided. 

Power-law. A continuous power-law distribution is described by a PDF 𝑝(𝑥) such that: 

𝑝(𝑥)𝑑𝑥 = 𝑃𝑟(𝑥 ≤ 𝑋 < 𝑥 + 𝑑𝑥) = 𝐶𝑥−𝛼𝑑𝑥 (8) 

where X is the observed value and C is a normalization constant. 

In our case, x can only assume integer values (e.g. number of neurons), hence we must consider 

the corresponding discrete PDF of the form: 

𝑝(𝑥) = Pr(𝑋 = 𝑥) = 𝐶𝑥−𝛼  (9) 

In both cases, 𝑝(𝑥) diverges as 𝑥 → 0, so one can identify a lower bound 𝑥𝑚𝑖𝑛 to the power-law 

regime. The normalizing constant C can be easily computed by solving ∫ 𝑝(𝑥)
+∞

𝑥𝑚𝑖𝑛
𝑑𝑥 = 1 
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(continuous case) or ∑ 𝑝(𝑥)+∞
𝑥=𝑥𝑚𝑖𝑛

= 1 (discrete case), providing 𝛼 > 1. In this study (and in 

general for empirical data), an upper bound 𝑥𝑚𝑎𝑥 is also present and is given by the finite system 

size, i.e. the number of electrodes in the recording array21. Therefore, 𝐶 will depend on all 

parameters 𝛼, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥. 

Finally, we also considered the CDF, defined to be 𝑃(𝑥) = Pr(𝑋 ≥ 𝑥) =  1 − ∑ 𝑝(𝑥)𝑥
𝑥=𝑥𝑚𝑖𝑛

=

 1 − ∑ 𝐶𝑥−𝛼𝑥
𝑥=𝑥𝑚𝑖𝑛

. 

Exponential. The PDF for the exponential distribution, with parameter 𝜆 > 0 and normalizing 

constant 𝐶, is 

𝑝(𝑥) = 𝐶𝑒−𝜆𝑥 (10) 

Power-law with exponential cut-off. The power-law distribution with exponential cut-off is 

defined as: 

𝑝(𝑥) = 𝐶𝑥−𝛼𝑒−𝜆𝑥  

with 𝜆 ≥ 0 and 𝛼 > 1. (11) 

Log-normal. The PDF of the lognormal distribution is given by: 

𝑝(𝑥) =  𝐶
1

√2𝜋𝜎𝑥
exp [−

(ln 𝑥− 𝜇)2

2𝜎2 ]   (12) 

with scale parameter 𝜎 and location parameter 𝜇 ≥ 0. 

Parameters estimation 

Least Squares Regression. The least squares (LS) regression considers directly a power-law model 

to the histogram of the avalanche distribution: 

𝑝(𝑥) ∝ 𝑥−𝛼            (13) 

In Eq. (13), x is the independent variable (e.g. avalanche sizes’ occurrence frequencies) and  the 

exponent or scaling parameter. Taking the logarithm of both sides of Eq. (13), we can observe that 

the power-law distribution obeys ln 𝑝(𝑥) = −𝛼 ln 𝑥 + 𝑐𝑜𝑛𝑠𝑡, implying that it follows a straight line 

on a bi-logarithmic plot. Thus, if a distribution approximately falls on a straight line, we can say 

that the distribution follows a power-law with an exponent equals to the slope of the straight line. 

Such slope is evaluated by performing least squares linear regression on the logarithm of the 

histogram.  

In this work, we applied such method by excluding from the fitting the first bin, corresponding to 

avalanches of unit-dimension and the last bins of the histogram, corresponding to avalanches whose 

probability is less than 1‰ of the maximum value of the distribution. 
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Maximum Likelihood Estimation. Let x be the independent variable (e.g., avalanche sizes’ 

occurrence frequencies) to which we wish to fit the power-law distribution reported in Eq. (13). A 

power-law distribution is described by the probability density function p(x), reported in Eq. (8). 

 In Eq. (9), if x  0 the probability density p(x) diverges: this means that not all the values of x  0 

can be taken into account. Thus, it becomes necessary to define a lower bound (xmin) for the power-

law behavior. The ML method estimates first such xmin value, and then, the scaling parameter  of 

Eq. (13) by means of the two following relationships in the case of continuous and discrete case20: 

𝛼 = 1 + 𝑛 [∑ 𝑙𝑛
𝑥𝑖

𝑥𝑚𝑖𝑛

𝑛
𝑖=1 ]

−1

         (14a) 

𝛼 = 1 + 𝑛 [∑ 𝑙𝑛
𝑥𝑖

𝑥𝑚𝑖𝑛−
1

2

𝑛
𝑖=1 ]

−1

        (14b) 

where xi are the observed values of x which satisfy the condition xi  xmin. 

To choose the best value of xmin, several strategies can be found in the literature22. The approach 

followed in this work is based on the work of Clauset and co-workers23. Practically, we consider the 

value of xmin that makes the probability distribution of the measured data and the best-fit power-law 

model as similar as possible above xmin. To measure the distance between the cumulative 

distribution function of the data and the fitted model, the Kolmogorov-Smirnov distance was used, 

since it can be used also for non-normal distributed data: 

𝐷𝐾𝑆 = max
𝑥≥𝑥𝑚𝑖𝑛

|𝑆(𝑥) − 𝑃(𝑥)|         (15) 

In Eq. (15) S(x) and P(x) are respectively the cumulative distribution function of the observations 

under the condition x > xmin and the power-law model which best fits the data in the interval x > xmin. 

Goodness-of-Fit. After the estimation of the critical exponent and of the power-law fitting, we have 

to verify whether the power-law hypothesis is reasonable or not, given the data distribution. To this 

end, it becomes necessary the use of a goodness-of-fit test which generates a p-value that quantifies 

the likelihood of such hypothesis. This method works as follows: the fitted distribution is sampled 

to generate artificial data-sets; then the Kolmogorov-Smirnov distance between each data-set and 

the fitted distribution is evaluated, producing the distribution of Kolmogorov-Smirnov distances 

expected if the fitted distribution is the true distribution of the data. A p-value is calculated as the 

proportion of artificial data sets showing a poorer fit than fitting the observed data set. When this 

value is close to 1, the data set can be considered to be drawn from the fitted distribution, and if not, 

the hypothesis should be rejected. We chose a p-level equal to 0.1, meaning that the power-law 

hypothesis is ruled out if p  0.1 according to20,24. 
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Log-Likelihood Ratio Test (LRT). Although the Kolmogorov-Smirnov goodness-of-fit test 

provides results in favor of a power-law distribution, we would like to compare it with other likely 

distributions. To this end, we used the log-likelihood ratio test (LRT) statistics20. Practically, the 

likelihoods of two competing distributions are evaluated and compared as follows: 

𝐿𝑅𝑇 = ln
𝐿(𝑝𝑜𝑤𝑒𝑟 𝑙𝑎𝑤)

𝐿(𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)
         (16) 

where L indicates the likelihood of a distribution. If LRT > 0 the power-law model is preferred, 

otherwise it should be rejected. However, the sign of LRT is not sufficient to assess whether the 

power-law is the best model to the data, because of possible statistical fluctuations. Following the 

method proposed by Vuong and colleagues25 to test the significance of the LRT, we computed the p-

value: if it is small (p < 0.1) the power-law model can be considered as the best candidate to fit the 

experimental data. Fig. S3b summarizes the whole procedure. 

Sub-critical distribution 

The same procedure was applied to verify whether the cumulative distribution function of a sub-

critical dynamics is ruled by an exponential distribution function. Following the previously 

described approach, we proceeded as follows. 

Let x be the independent variable (e.g., avalanche sizes’ occurrence frequencies) to which we 

wish to fit the exponential distribution. An exponential distribution is described by the probability 

density function p(x) of the form: 

𝑝(𝑥) = Pr(𝑋 = 𝑥) = {
𝜆0𝑒−𝜆0𝑥𝑗          𝑖𝑓 𝑥𝑗 ∈  𝑅𝑥 

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    .
  (17) 

 

where Rx = [0, +), and 0 is the parameter to estimate with ML by means of the following 

equation: 

𝜆0 =
𝑛

∑ 𝑥𝑗
𝑛
𝑗=1

            (18) 

Equation (18) shows that the estimation of 0 corresponds to the reciprocal of the mean. 

The procedure to evaluate the goodness-of-fit of the exponential distribution follows the same steps 

used for the power-law one, namely: i) calculation of the Kolmogorov-Smirnov statistics and 

likelihood ratios (see Eq. 15); ii) comparison of the exponential accuracy with alternative 

distribution models (power-law, exponential cut-off, and log-normal) with Eq. (16).  

Additional Results 

Excitatory/inhibitory links balance 

The same percentages are approximately maintained by considering the total number of 

excitatory/inhibitory links for both SF and RND networks (Fig. S4a and b, black-square lines). By 
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sweeping the percentage of inhibitory neurons (5, 20, 40, 60, 70, 80%), also the percentage of 

inhibitory links follows the same proportionality rule (Fig. S4). 

 

Figure S4. Percentage of inhibitory links obtained by varying the percentage of inhibitory neurons for a) SF and 

b) RND networks of increasing average degree (from Net_1 to Net_9). 

Functional networks resemble structural features 

We tested whether the structural features of the simulated networks are preserved in the 

functional networks inferred by means of the cross-correlation algorithm (see Supplementary 

Information, Data Analysis). For each realization of each SF and RND network, we applied the 

cross-correlation with time lag set to 1 ms and time frame set to 150 ms. After that, for each 

simulation we obtained an adjacency matrix containing the peak values of the cross-correlograms. 

Following the approach proposed in26, we sorted all the statistically significant links based on the 

connection strengths, and we took into account only the ones that overcome an arbitrary threshold 

set as mean + 2 standard deviation of the non-zero values of the cross-correlogram peaks. 

For the obtained thresholded adjacency matrices, the degree distributions were evaluated and they 

are presented in Fig. S5a and b for SF and RND networks, respectively. Each colored line with 

symbols shows the average degree distribution computed over 10 realizations. It is rather evident 

that for SF networks, the degree distribution can be fitted with a power-law (Fig. S5a) with an 

exponent lying between -1.81 and -1.23. Interestingly enough, these exponents are not far from the 

corresponding ones obtained for the structural degree distributions (cf. Fig. S5c). On the other hand, 

as expected, the degree distributions of RND networks display a quasi-gaussian distribution, 

although some fluctuations can be observed. 

Coherently with the results found by comparing diffusion imaging and resting state functional 

magnetic resonance imaging (fMRI) that show a tight relationship between structural and functional 

connections27-29, also from our simulations we found that functional connections are predictive of 
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the structural ones, and that the topological parameters of structural networks are qualitatively 

preserved in functional networks. 

 

Figure S5. Functional network characterization. Degree distributions of a) SF and b) RND networks.  

Distribution comparison 

The plausibility of the power-law fitting can be estimated by comparing the fitting results with the 

ones obtained by fitting other similar data distributions, namely: truncated power-law, exponential 

and lognormal, by means of the LRT20 (cf. Methods, Fitting procedures). Particularly, the 

exponential distribution is indicative of a sub-critical dynamic state; the log-normal distribution can 

be assimilated to a power-law because of its heavy-tail which makes it difficult to distinguish 

between the two; the truncated power-law distribution is indeed a power law distribution for finite-

size systems (i.e., finite number of neurons). In the latter case, it is likely to observe an exponential 

cut-off above the system size. 

Table S1. Model comparison using LRT. Power-law model is compared to truncated power-law, exponential, and 

lognormal alternative distributions. For each distribution, the LRT value and the p-value (bold case denotes statistical 

significance) are reported. 
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For each simulated network, Table S1 shows the mean values of the LRT and the corresponding 

p-level for the alternative distributions. 

The first two networks (i.e., Net_1, Net_2) were not considered since the goodness of the 

corresponding power-law fitting was not sufficient (cf. Fig. 4e of the main text). Net_3 and Net_4, 

although displaying a good power-law fitting, are better described by a truncated power-law model, 

as witnessed by the negative value of LRT, see Table S1. Net_5 displays positive LRTs when 

comparing power-law fitting with alternative models, but since the associated p-values exceed 0.1 

the plausibility for a power-law distribution is not significant. Finally, avalanche size distributions 

from Net_6 to Net_9, are best fit by a power-law than by any other tested distribution, so they can 

be considered as ruled by a power-law. These results support the hypothesis that criticality is 

achieved by SF networks having a relatively high average connectivity degree, which also display, 

in turn, consistent small-world features. 

Synaptic weight distribution affects critical dynamics 

In Fig. 6 of the main text, we explored whether criticality is affected by the synaptic weigth 

distribution, in particular by sweeping the mean value of the excitatory connections. In this section, 

two further analyses have been performed: first, we swept the standard deviation of the synaptic 

weight distribution (from 0.0 to 2.2) for all SF and RND networks, keeping constant the mean to the 

default value (𝑤̅𝑒𝑥𝑐 = 10); second, only for the SF networks, we swept simultaneously both the 

standard deviation and the mean of the synaptic weight distribution for each degree (i.e., Net_i), and 

we computed the GoF. 

The false color map of Fig. S6 (organized as the correspondent Fig. 6 of the main text), displays 

for SF and RND networks the GoF of the power-law distribution (Fig. S6a and b), the MFR (Fig 

S6a and b), and the percentage of active neurons (Fig. S6e and f) as a function of the standard 

deviation of synaptic weight (y-axis) and the average degree (x-axis). A black dashed box highlights 

the standard deviation of the synaptic weights that was used in all previous simulations. We 

delimited with a solid black line, the critical regime area obtained by thresholding the GoF and 

performing the LRT. By sweeping the standard deviation of the synaptic weights, two main 

considerations can be done. For SF networks, we observe that below the default value of the 

standard deviation (i.e., s5), we cannot achieve criticality independently of the degree (i.e., Net_i). 

The chosen value (s5) of the standard deviation guarantees also a good propagation of the 

electrophysiological activity of the network, as Fig. S6e shows: below s5, the percentage of active 

neurons is below 30%, while for values of standard deviation greater than s5, and with a 

medium/high level of degree (i.e., from Net_6), more than 80% of the neurons are active. Finally, as 

Figure S6c shows, we can see how the firing rate grows as a function of the standard deviation: the 



15 

 

greater is the standard deviation of the synaptic weight distribution, the higher is the value of the 

achieved firing rate.  

 

Figure S6. False color maps of GoF and activity parameters obtained for different synaptic weights’ standard 

deviation values and connectivity degree. GoF for a) SF, b) RND networks. MFR for c) SF, d) RND networks. 

Percentage of active neurons for e) SF and f) RND networks. The solid black polygon highlights the parameters’ 

domain that corresponds to a critical regime. The black dashed rectangle shows the default synaptic weight (i.e. used in 

the previous simulations). 
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Figure S7. False color maps of GoF for the SF networks. Each 3D plot is relative to a network degree, and the 

different values of GoF are obtained by sweeping both the standard deviation and the mean of the synaptic weight 

distribution. The green asterisk (indicatingthe couple 𝑤̂, 𝑠̂) highlights the default values. 
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For RND networks, the increase of the standard deviation of the synaptic weights induces a wider 

region of criticality than the one obtained by sweeping the mean value (Fig. 6b and S6b). However, 

also in this configuration, the obtained firing rate values present non-physiological values (Fig. 

S6d), although smaller than the ones of Fig. 6d (up to 80 spikes/s). The percentage of active neurons 

in RND networks displays a similar trend of the SF ones (Fig. S6f). 

Finally, we simulated the emergent dynamics of each SF network (i.e., from Net_1 to Net_9) by 

sweeping simultaneously both the mean value and the standard deviation of the synaptic weight 

distribution, accordingly to the values used in Fig. 6 (w0-w13) and Fig. S6 (s0-s11). Figure S7 

shows in a 3D fashion the GoF (z-axis) as a function of the mean (y-axis) and standard deviation (x-

axis) of the synaptic weight distribution. The green asterisk highlights the default values used for 

the mean (𝑤̂) and the standard deviation (𝑠̂). The white-square planes identify the GoF threshold p 

= 0.1. Values greater than 0.1 suggest a critical behavior (cf. Methods, Fitting procedures). 

From these simulations, two considerations emerge: (i) the degree of connectivity of the network 

is fundamental to push the network toward a critical state. As an example, considering the case of 

Net_1 of Fig. S7, an increase of both the mean and the standard deviation of the synaptic weight 

distribution does not guarantee a wide critical area, which can be easily obtained in Net_6, … 

Net_9. (ii) Comparing the effect of the mean and standard deviation of the synaptic weight 

distribution, it results that the mean is the most sensible parameter to move the network towards a 

critical regime. 

Pharmacological manipulation 

We tested if, by modifying the inhibitory synaptic transmission efficacy, without changing the 

composition of the network (i.e., 30% of inhibitory neurons) and the topology of the graph (i.e., SF 

networks with the same average degree), the power-law regime is preserved or not. By reducing the 

efficacy of all inhibitory connections (i.e. 50% and 100% of the original value) to mimic the effect 

of bicuculline (BIC), a supercritical behavior is achieved (Fig. S8b, grey and dark grey bars) for all 

the considered degrees.  

The simulated effect of BIC was also evaluated in terms of network synchronization by means of 

the CI0. Fig. S8a shows the trend of the CI0 for all the three simulated conditions (i.e. spontaneous 

activity and different levels of BIC). These modeling results show the same qualitative trend of the 

experimental data10, confirming that a supercritical state is typical of cultures with a high 

synchronization level, as induced by BIC stimulation. 
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Figure S8. Effect of BIC on a) Coincidence Index, b) Goodness-of-Fit of the power-law model. Two levels of BIC 

concentration have been simulated in order to consider half-blocked (circle and grey bars) and fully-blocked (triangles 

and dark grey bars) inhibitory transmission. 

Abbreviation List 

Here below, we reported the abbreviations we used in both the main text and Supplementary 

Information. 

bicuculline BIC 

burst duration BD 

clustering coefficient C 

coincidence index CI0 

cross-correlation CC 

cumulative distribution function CDF 

days in vitro DIV 

degree D 

fast spiking FS 

goodness-of-fit GoF 

inter-event interval IEI 

inter-spike-interval ISI 

least-squares LS 

log-likelihood ratio test LRT 

maximum likelihood ML 

mean bursting rate MBR 

mean firing rate MFR 

Micro-Electrode Array MEA 

path length L 

probability density function PDF 

random RND 

regular spiking RS 

scale-free SF 

Self-Organized Criticality SOC 

small-word SW 
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