

в

100 80-P<0.0001 Percent survival 60 40-EREG-High/KRAS-WT EREG-High/KRAS-Mut 20 EREG-Low/KRAS-WT EREG-Low/KRAS-Mut 0-20 100 80 40 60 ō Overall survival (Month)

Supplementary Fig 5

siControl

siEREG-1

siEREG-2

Supplementary Fig 6

Supplementary figure legends

Supplementary Fig. 1. The effects of U0126 and FR180204 on *EREG* expression in *EREG*-overexpressing NSCLC cells with wild-type *KRAS* (*BRAF* mutants, *EGFR* mutants, and NSCLCs with wild-type *EGFR/BRAF/KRAS*) as evaluated by the same methods in Fig. 2. *P<0.05; **P<0.01; ***P<0.001 for comparison with mock treatment (DMSO alone) by the Kruskal-Wallis test with Dunn's Multiple Comparison.

Supplementary Fig. 2. (A) Correlations between *EGFR* expression and *EGFR* copy number (Pearson r = 0.6450, *P*<0.0001 in all NSCLCs; Pearson r = 0.9841, *P*<0.0001 in *EGFR* mutants; Pearson r = 0.7448, *P* = 0.0135 in NSCLCs with wild-type *EGFR/BRAF/KRAS*). **(B)** Correlations between *EREG* expression and *EGFR* expression. **(C)** Correlations between *EREG* expression and *EGFR* copy number (Pearson r = 0.8455, *P* = 0.0021 in NSCLCs with wild-type *EGFR/BRAF/KRAS*).

Supplementary Fig. 3. A significant correlation was observed between *EREG* mRNA expression and EREG protein expression scoring in lung adenocarcinomas (Spearman r = 0.5265, *P*<0.0001).

Supplementary Fig. 4. Kaplan-Meier analysis of overall survival (month) in lung adenocarcinoma patients who had not received EGFR-TKI therapy. The patients were classified **(A)** according to the *EREG* expression levels or **(B)** according to *EREG* expression levels and *KRAS* mutational status.

Supplementary Fig. 5. siRNA-mediated *EREG* silencing in H358 cells as evaluated by Immunofluorescent staining. After 72 h of siRNA transfection, the cells were stained with the anti-EREG antibody (green) and Hoechst 33342 (blue) and analyzed by fluorescent microscopy. siControl: treatment with *Tax* siRNA. siEREG-1 and siEREG-2: treatment with *EREG* siRNAs.

Supplementary Fig. 6. (A) siRNA-mediated EGFR knockdown in HCC827 NSCLC cells harboring EGFR mutations (E746-A750 deletion). NT: treatment with medium alone; siControl: treatment with Tax siRNA; siEGFR-1 and siEGFR-2: two siRNAs targeting different sites of EGFR mRNA. *P<0.001; ** P<0.05 for comparison with NT. (B) siRNA-mediated EGFR knockdown reduces EREG mRNA expression in HCC827 cells. *P < 0.001 for comparison of NT. (C) Treatment with gefitinib or erlotinib down-regulates EREG expression in HCC827 cells. After treatment with gefitinib (1 μ M) or erlotinib (1 μ M) for 24 h, the cells were harvested for subsequent quantitative RT-PCR analysis. *P < 0.01; **P < 0.001 for comparison with mock treatment (DMSO alone). (D) siRNA-mediated BRAF knockdown in H1666 NSCLC cells harboring *BRAF* mutations (G466V point mutation). NT: treatment with medium alone; siControl: treatment with Tax siRNA; siBRAF-1 and siBRAF-2: two siRNAs targeting different sites of the *BRAF* mRNA. *P<0.001 for comparison with NT. (E) siRNA-mediated BRAF knockdown reduces *EREG* mRNA expression in H1666 cells. *P < 0.001 for comparison with NT. (F) The BRAF inhibitor SB590885

down-regulates *EREG* expression in H1666 cells. After treatment with SB590885 (10 μ M) for 24 h, the cells were harvested for subsequent quantitative RT-PCR analysis. **P*<0.001 for comparison with mock treatment (DMSO alone). In Fig. 2A-G, the columns represent the mean ± SD (*bars*) in eight determinations from two independent experiments, and NT was set at 100%. All experiments were performed by quantitative RT-PCR analysis. The differences between two groups were analyzed by the Kruskal-Wallis test with Dunn's multiple comparison.

Supplementary Fig. 7. Comparisons of *EREG* mRNA expression levels between tumors with or without pleural involvement (P), between tumors with or without lymphatic permeation (L), between tumors with or without vascular invasion (V), and between tumors with any P/L/V factor-positive or without such characteristics. The differences between groups were analyzed by the Mann-Whitney test.

Parameter		No.	(%)
Gender	Male	45	(51)
	Female	44	(49)
Age	≤70	44	(49)
	>70	45	(51)
Smoking history	Smoker	48	(54)
	Non-smoker	41	(46)
Stage	Ι	57	(64)
	II	11	(12)
	III	20	(23)
	IV	1	(1)
Pathology	Adenocarcinoma	77	(87)
	Squamous cell carcinoma	12	(13)
Pleural involvement	+	33	(37)
	-	56	(63)
Lymphatic permeation	+	40	(45)
	-	49	(55)
Vascular invasion	+	37	(42)
	-	52	(58)
KRAS gene	Wild-type	72	(81)
	Mutation	17	(19)
EGFR gene	Wild-type	55	(62)
	Mutation	34	(38)

Supplementary Table 1. Characteristics of tumor specimens of non-small cell lung cancer.

Supplementary Table 2. Cell lines used in the present study.

Cell line	Histological type	Mutation
NHBE	NHBEC	KRAS/BRAF/EGFR Wild-type
SAEC	NHBEC	KRAS/BRAF/EGFR Wild-type
BEAS-2B	NHBEC	KRAS/BRAF/EGFR Wild-type
HBEC3	NHBEC	KRAS/BRAF/EGFR Wild-type
HBEC4	NHBEC	KRAS/BRAF/EGFR Wild-type
NCI-H157	NSCLC	KRAS Mutation
NCI-H358	NSCLC	KRAS Mutation
NCI-H441	NSCLC	KRAS Mutation
NCI-H460	NSCLC	KRAS Mutation
NCI-H1264	NSCLC	KRAS Mutation
NCI-H1792	NSCLC	KRAS Mutation
NCI-H2009	NSCLC	KRAS Mutation
NCI-H2122	NSCLC	KRAS Mutation
NCI-H2126	NSCLC	KRAS Mutation
HCC44	NSCLC	KRAS Mutation
HCC515	NSCLC	KRAS Mutation
HCC4017	NSCLC	KRAS Mutation
NCI-H1395	NSCLC	BRAF Mutation
NCI-H1666	NSCLC	BRAF Mutation
NCI-H1755	NSCLC	BRAF Mutation
NCI-H2087	NSCLC	BRAF Mutation
NCI-H820	NSCLC	EGFR Mutation
NCI-H3255	NSCLC	EGFR Mutation
NCI-H1975	NSCLC	EGFR Mutation
HCC827	NSCLC	EGFR Mutation
HCC2279	NSCLC	EGFR Mutation
HCC2935	NSCLC	EGFR Mutation
HCC4006	NSCLC	EGFR Mutation
HCC4011	NSCLC	EGFR Mutation
PC9	NSCLC	EGFR Mutation
NCI-H661	NSCLC	KRAS/BRAF/EGFR Wild-type
NCI-H838	NSCLC	KRAS/BRAF/EGFR Wild-type
NCI-H1299	NSCLC	KRAS/BRAF/EGFR Wild-type
NCI-H1437	NSCLC	KRAS/BRAF/EGFR Wild-type
NCI-H1648	NSCLC	KRAS/BRAF/EGFR Wild-type
NCI-H1819	NSCLC	KRAS/BRAF/EGFR Wild-type
HCC15	NSCLC	KRAS/BRAF/EGFR Wild-type
HCC78	NSCLC	KRAS/BRAF/EGFR Wild-type
HCC95	NSCLC	KRAS/BRAF/EGFR Wild-type
HCC193	NSCLC	KRAS/BRAF/EGFR Wild-type

NHBEC: Noncancerous human bronchial epithelial cell line

NSCLC: Non-small cell lung cancer

Supplementary Table 3. Univariate and multivariate analysis in patients with non-small cell lung cancer.						
Prognostic marker	Hazard ratio	95% CI	P value			
Univariate analysis						
Age (>70 vs ≤70)	1.392	0.504 - 3.846	0.5241			
Gender (male vs female)	1.490	0.539 - 4.123	0.4419			
Smoking history (smoker vs non-smoker)	1.852	0.657 - 5.221	0.2439			
Pathology (adeno vs squamous)	0.678	0.190 - 2.422	0.5499			
Stage (I-II vs III-IV)	1.219	0.343 - 4.329	0.7596			
KRAS gene (mutation vs wild-type)	2.244	0.709 - 7.108	0.1693			
EGFR gene (mutation vs wild-type)	0.616	0.210 - 1.803	0.3762			
EREG expression (as a continuous variable)	1.002	1.000 - 1.004	0.0239			
Multivariate analysis						
Pathology (adeno vs squamous)	0.629	0.165 - 2.399	0.4970			
Stage (I-II vs III-IV)	1.578	0.497 - 5.012	0.4388			
KRAS gene (mutation vs wild-type)	1.584	0.470 - 5.345	0.4583			
EREG expression (as a continuous variable)	1.002	1.000 - 1.004	0.0346			

Supplementary Table 4. Univariate and multivariate analysis in adenocarcinoma patients.						
Prognostic marker	Hazard ratio	95% CI	P value			
Univariate analysis						
Age (>70 vs \leq 70)	1.245	0.394 - 3.938	0.7088			
Gender (male vs female)	1.493	0.467 - 4.777	0.4995			
Smoking history (smoker vs non-smoker)	1.948	0.617 - 6.151	0.2556			
Stage (I-II vs III-IV)	1.176	0.316 - 4.372	0.8086			
KRAS gene (mutation vs wild-type)	3.329	0.982 - 11.292	0.0536			
EGFR gene (mutation vs wild-type)	0.632	0.200 - 1.997	0.4338			
EREG expression (as a continuous variable)	1.002	1.000 - 1.004	0.0133			
Multivariate analysis						
Stage (I-II vs III-IV)	1.912	0.439 - 8.329	0.3878			
KRAS gene (mutation vs wild-type)	2.852	0.768 - 10.595	0.1175			
EREG expression (as a continuous variable)	1.002	1.000 - 1.004	0.0366			