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Model Parameter Definitions 

Parameter Description Units 
   Initial regulator concentration Concentration  

(Molecules / Cell Volume) 

   Threshold regulatory concentration for differentiation Concentration 
(Molecules / Cell Volume) 

  Dilution/degradation rate constant 
 

1/Time 

  Concentration of   required for  
half-maximal   promoter activation  

Concentration 
(Molecules / Cell Volume) 

  Number of circuit pulses 
during deferral period 

Dimensionless 

    Open loop circuit promoter strength 
(Maximal production rate from promoter) 

Concentration / Time 

   Continuous feedback circuit promoter strength 
(Maximal production rate from promoter) 

1 / Time 

   Polyphasic feedback circuit promoter strength 
(Maximal production rate from promoter) 

Dimensionless 
(see text) 

   Deferral time for continuous circuit 
(Time for   to reach    starting from   ) 

Time 

   Deferral time for continuous circuit 
(Time for   to reach    starting from   ) 

Time 

   Sensitivity of deferral time to feedback strength  
for continuous circuit 

Time
2
 

   Sensitivity of deferral time to feedback strength  
for polyphasic circuit 

Time
2

 

(see text) 

  Period for circuit pulsing 
(time between the start of successive pulses of activation) 

Time 

  Pulse period index Dimensionless 

 

Full Description of Polyphasic Positive Feedback Circuit Model. 

Equation (S1) is an explicit phase-by-phase description in the  th period of the polyphasic feedback 

circuit that also incorporates saturating feedback with saturation constant  . 
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Here,          denotes      evaluated at time        

Figure Simulation Details 

Here we describe the numerical simulations used in the main figures. All simulations were performed 

using MATLAB’s built in ode45 integrator. 



The time trace in Figure 1B is obtained by integrating Equation (1). Parameters were chosen so that each 

cell cycle takes unit time and      crosses the threshold of          at 5 cell cycles. 

The time trace in Figure 1C is obtained by integrating the equation 
     

  
          

    

        
, a more 

realistic version of Equation (3) incorporating saturating feedback, with      . Parameters were 

chosen so that each cell cycle takes unit time, and so that      crosses the threshold of          at 5 

cell cycles. 

The time trace in Figure 1D is obtained by integrating equation (S1), a generalization of Equation (5) 

incorporating saturating feedback, with      . We used the unit time step of the ode45 integrator as 

   to approximate an extremely brief pulse. Parameters were chosen so that each cell cycle takes unit 

time and so that      crosses the threshold of       at 5 cell cycles. 

The tuning curves in Figure 1B-D (lower panels) were generated by simulating the respective systems for 

several   values and recording the time for   to reach a threshold of          in each case. All other 

parameters in tuning curve simulations are identical to those used for time trace simulations. 

 

Pulsing Alone Does Not Increase The Tunability of Positive Feedback.  

In order to disentangle the contributions of pulsing and phasing from the performance of the polyphasic 

feedback circuit, consider a pulsed, but not polyphasic, positive feedback circuit where the production 

rate during the pulse is a function of the instantaneous value of     .  

 
     

  
        {

                                       
  

  
                                  

 

(S2) 

 

We can solve this model one phase at a time as in the polyphasic case. The solution is 

           
         (S3) 

 

The exponential growth rate of      is linearly dependent on   , just like the non-pulsed continuous 

feedback case, and in contrast to the logarithmic dependence on    of the polyphasic feedback case. 

 

Polyphasic and Continuous Feedback are Equivalent at High Pulse Frequencies. 

In this section we study how circuit deferral times depend on feedback strength. 

Deferral time is the time required for the regulator,  , to start from an initial concentration,   , and 

accumulate to a threshold value,   . We denote the deferral times of continuous and polyphasic 



positive feedback circuits as    and   , respectively. We assume that the polyphasic circuit pulses   

times, with period        (Figure S1A). 

To compare the two circuits we compute the sensitivity of their deferral times (   and   ) to their 

respective feedback strengths (   and   ). We perform this calculation analytically for non-saturating 

linear feedback, and numerically for saturating feedback. 

We show that at high pulse frequencies (
 

 
   , with appropriately scaled feedback strength, the 

polyphasic system becomes identical to the continuous positive feedback system (Supplementary Figure 

1B), with similar sensitivity to feedback strength.  

We define the continuous circuit’s sensitivity,   , as the rate of change of deferral time with respect to 

changes in feedback strength, e.g.           . Here,    and    are related by    
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We now define the polyphasic circuit’s sensitivity,   , with the following observations: 

1. To compare    with    they must have the same units. Although    and    both have units of 

time,    is dimensionless while    is in units of inverse time. To keep dimensions consistent, we 

compare    with      (For a given pulse frequency,   remains constant as    changes).  

 

The following argument justifies this comparison, using the non-saturating models. Consider 

polyphasic and continuous circuits, each tuned to the same deferral time. During each period  , 

each circuit must accumulate the same amount of     . Equating equations (4) and (6) from the 

main text for one period leads to the relation: 

                 
    (S5) 

    

At high pulse frequencies where     as    remains constant,   
  

 
  , and the 

normalized feedback strengths are related through: 

 
   

  

 
 

(S6) 

 

This relates the production rate of the continuous circuit, in units of inverse time, to an effective 

polyphasic production rate expressed in production per period of time. 



 

2. In the limit of infinitely brief pulses, the polyphasic circuit’s deferral time does not change 

continuously as we change   . Rather, because pulses occur with period  , the deferral time    

essentially changes in multiples of  . Let     denote the minimum increase in    required to 

shift the threshold crossing time forward by one period.  

 

We can now define the polyphasic sensitivity    as the minimum change in deferral time, e.g. a 

single period      , divided by the minimum required change in time-normalized feedback 

strength,     : 
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Sensitivity Equivalence in Non-Saturating Circuits : Analytic Demonstation 

To calculate    we first calculate    . By solving equation (6) from the main text for   , we find that the 

minimum feedback strength required to cross threshold in   pulses is      √
  

  
     

  . To shift 

the threshold crossing time forward by one period the circuit will cross threshold in     pulses, so 

               . 

In the high pulse frequency limit, where     as       remains constant, and recalling the 

definition for    used in (S4), shows that            : 
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At high frequencies the polyphasic circuit becomes as sensitive to changes in feedback strength as the 

continuous positive feedback circuit. In the next section, we show the same point in the presence of 

saturating nonlinearity using a numerical calculation (Supplementary Figure 1B). 

 

Sensitivity Equivalence in Saturating Circuits : Numerical Demonstration 

We next investigated this difference in the saturating circuits described in the text. Recall that the 

continuous circuit dynamics, with saturation, are 
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The polyphasic circuit dynamics were simulated with the approximation of an infinitely short        

‘ -function’ pulse for phase 3: 
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(S10) 

 

For each circuit we computed the deferral time as the time to reach a value        starting from an 

initial condition of     . We set both circuits in a moderately saturating regime with      . 

To plot polyphasic sensitivity versus pulse frequency, we simulated circuits with increasing pulse 

frequencies but equal deferral times (     cell cycles). (Figure S1B). For each pulse frequency, which 

defines a corresponding  , we first found the smallest    value that caused the circuit to cross threshold 

in 5 cell cycles. We then computed    by numerically finding the smallest     that shifts the threshold 

crossing time up by one period to 4 cell cycles. We then computed    as defined in equation (S7) (Solid 

circles). Finally, we computed the continuous circuit sensitivity    for a 5 cell cycle deferral time (dashed 

line). Consistent with analytic results for linear (non-saturating) feedback, in the high pulse frequency 

limit,    approaches    for saturating circuits as well. 

 

Polyphasic Feedback is Analogous to Infrequently Compounding Interest. 

The differences between polyphasic positive feedback and continuous positive feedback can be 

understood using an analogy to interest rates.  

Consider a bank account with starting value   . If the account bears interest with annual interest rate  , 

and interest compounds   times per year, then the value of the account after   years is 
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In the limit of continuous compounding (    , the value becomes 

         
   (S12) 

 



Compounding interest acts as a non-saturating positive feedback, and interest rate plays the role of 

feedback strength. These equations suggest that continuous linear positive feedback behaves like 

continuously compounding interest, while polyphasic positive feedback behaves like infrequently 

compounding interest since sampling and production occur in a periodic, discrete manner. 

The response of these accounts to a change in interest rate mimics the response of positive feedback 

circuits to changes in feedback strength. At the low interest rates involved in typical financial 

transactions (on the order of 1% - 10%), the two accounts behave similarly, as is well known in finance. 

At extremely high interest rates (on the order of 100%, sometimes seen in predatory lending or during 

extreme financial instability), the two compounding schemes can behave very differently. 

The high interest rate regime corresponds to the feedback strength relevant to biological timers. For 

example, in Bacillus subtilis, ‘low threshold’ and ‘high-threshold’ sporulation promoters differ by  65-

fold in their affinities for the master regulator Spo0A. The low threshold skf gene has a dissociation 

constant of  26nM compared to  1700nM for spoIIG [S1]. To achieve a comparable  65-fold increase 

in a bank account balance, from $26 to $1700 in 5 compounding events requires 130% interest. Using 

round numbers, a 100-fold increase in a bank account from $10 to $1000 in 5 compounding events 

requires an interest rate of approximately 150%.  

To illustrate the differences in sensitivity, consider two bank accounts, which compound at different 

frequencies. Both start with a balance of $1,000.00. One account compounds daily (approximating 

continuous positive feedback), while the other account compounds monthly (corresponding to 

polyphasic positive feedback). The interest rates of both accounts are set so that after 5 months each 

account ends up valued at $100,000, to correspond to an assumed 100 fold change in regulator 

concentration. The daily compounding account thus earns  3.1% interest each day, while the monthly 

compounding account earns  151% interest each month. In months {0, 1, 2, 3, 4, 5}, both accounts have 

balances of {$1000, $2512, $6310, $15,849, $39,811, $100,000}. 

Now assume that an interest rate shock suddenly doubles interest rates. The daily compounding 

account’s interest rate is now  6.2% and the monthly compounding account’s interest rate is now 

 302%.  

In months {0, 1, 2, 3, 4, 5}, the daily compounding account compounding at 6.2% has balances of {$1000, 

$6319, $37,685, $231,340 $1,420,162, $8,718,109}. 

In months {0, 1, 2, 3, 4, 5}, the monthly compounding account compounding at 302.4% has balances of 

{$1000, $4024, $16,191, $65,148, $262,140, $1,054,793}. 

The 5 month balance of the daily compounding scheme is now  $8.7M, while the 5 month balance of 

the monthly compounding scheme is only  $1.0M.  

The monthly compounding scheme is much less sensitive to interest rate shocks than the daily 

compounding scheme. This reduced sensitivity is analogous to the reduced sensitivity of polyphasic 

feedback to changes in feedback (promoter) strength discussed in the main text. 



 

Adding Slow Phosphorylation Kinetics to an Open Loop Circuit Does Not Significantly Extend 

Timescales. 

Consider an extension of the open loop model described by equation (1) of the main text. In this 

extended model, the protein exists in two states: unphosphorylated/inactive     , and 

phosphorylated/active   . We denote total protein concentration by                 . For 

simplicity,      is phosphorylated to       with a constant (saturated) kinase rate constant of   . 

Conversely,       is dephosphorylated to      with a constant (saturated) phosphatase rate constant of 

  . All proteins are diluted and degraded with total rate constant  . 

In this model, can parameters be chosen so that       equilibrates at a time scale much longer than one 

cell cycle? Intuitively, one might suspect that very slow kinase and/or phosphatase rate constants would 

allow    to equilibrate slowly. 

The dynamic equations are: 

  

      

  
          

     

  
                         

      

  
                        

 

 

 

 

(S13) 

 

We can solve for      , assuming initial conditions              . Defining           for 

convenience, 
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Note that the timescales in this expression are generally faster than or equal to  , suggesting that the 

system cannot respond arbitrarily slowly. To check this inference explicitly, we performed numerical 

simulations (Figure S2), which demonstrate that in this circuit, even at extremely slow phosphorylation 

and/or dephosphorylation rates,    equilibrates no more slowly than  2-3 cell cycles, despite a 

decrease in rate constants over several orders of magnitude (plateau in equilibration times). Thus, 

addition of the phosphorylation degree of freedom does not circumvent the limitations imposed by 



dilution of circuit components. See also related work by Zwicker et al in the context of the 

cyanobacterial circadian clock [S2]. 

 



  

Supplementary Figures 

 

 

Figure S1. Polyphasic and continuous feedback circuits behave similarly in the limit of high 

pulse frequency. (A) (Left) Definition of quantities describing the polyphasic circuit. (Right) 

Plotted are three saturating networks with       tuned to cross threshold        at 5 



cell cycles starting from     ; (left) a polyphasic circuit with one pulse per cell cycle, (center) 

a polyphasic network with 3 pulses per cell cycle, and (right) a continuous circuit. As polyphasic 

pulse frequency increases, the circuit behaves more like its continuous counterpart. (B) Deferral 

sensitivities of polyphasic circuits approach that of the continuous circuit in the limit of high 

pulse frequency. (Left) Deferral sensitivity is defined as the change in deferral time caused by a 

change in feedback strength (promoter strength). Continuous network deferral sensitivity 

(blue) is defined as            (Eq. S4). Polyphasic network deferral sensitivity (red) is 

defined as    
   

     ⁄  
 (Eq. S7). (Right) As pulse frequency increases, the deferral time 

sensitivity of polyphasic circuits (solid circles) increases, approaching that of continuous circuits 

(dashed line) in the high frequency limit. 

 

Figure S2. Phosphorylation does not overcome the effects of dilution rate on equilibration 

time. (A) A simple model of an open loop circuit with phosphorylation (cf. Eq S13). Regulator 

     is constitutively produced in an inactive state, and is activated by phosphorylation to form 

     . Both species are diluted/degraded with total rate constant   as in all other models. (B) 

Slow phosphorylation rate constants have only a limited effect on deferral time. Plotted is the 

deferral time of the network of Eq S13. Starting at zero initial conditions, we define deferral 

time as the time in cell cycles required for       to reach             of steady state. We 

plotted this as a function of kinase and phosphatase reaction rates (   and    respectively), 

and observed that deferral times increase with slower reaction rates but plateau at a maximal 

value of  2-3 cell cycles. 
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