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S1 Text. The construction of Markov state model 

 

The Markov state model 

To obtain folding kinetics from the simulation, we constructed a Markov state model following 

the procedure used by Marinelli and colleagues [1]. We first partitioned the free energy 

landscape into mesoscopic states (bins). The term “mesoscopic” emphasizes that the bins have to 

be small enough to lower the probability of grouping kinetically irrelevant microscopic states in 

one state and have to be simultaneously large enough to guarantee sufficient statistical quality. 

The transition rates between bins were assumed to be 

0 exp( / 2)ij ij ijk k F       (1) 

where i and j are the indices of the bins, 𝑘𝑖𝑗
0 are the rates associated with simple diffusion on a 

flat free energy surface, Δ𝐹𝑖𝑗 are the free energy difference between bins I and j, and β is the 

inverse temperature. The rates 𝑘𝑖𝑗
0  are proportional to the diffusion constants D on the free 

energy surface and taken to be position independent for simplicity. The way we determined the 

diffusion constant is described in the next section. 

  The transitions between Markov states can be described by a stochastic matrix T, which is 

related to the rate matrix K=(k𝑖𝑗) by 

( ) K tT t e                  (2) 

where Δt is the time lag between two successive observations of the system states. 

 

Estimation of the diffusion constants 

The diffusion constant was determined by maximizing the likelihood that a given MD trajectory 

is generated by the corresponding Markov state model. The likelihood L(D) as a function of D is 

given by 

ln ( ) ( ( ) | ( ))Dt
L D p t t t          (3) 

where α(t) is the index of the bin at time t for a given MD trajectory. The trajectory was taken 

from 200ns long MD run starting from native structures. Note that the likelihood L(D) is also a 

function of the time lag Δt, thus the diffusion constant also depends on this time lag. A common 

behavior is that by increasing the time lag the diffusion constant converges to a well defined 

value. This means that after this Δt, the dynamics between bins is close to Markovian and is well 

approximated by the model proposed. The logarithm of the likelihood lnL(D) as a function of D, 

and the dependence of D on Δt are given in Fig. S5(A). 

 

The transition times between different clusters 

Kinetic Monte Carlo (KMC) method [2] was employed to estimate transition rates between 

clusters. The transition rate from cluster A to B was calculated by monitoring the number of times 

a trajectory goes from A to B without passing any other basins as a function of time during a long 

kinetic Monte Carlo simulation. In principle, this number grows linearly with time t, 

BA BA AN k P t             (4) 

where PA is the population in basin A. kBA can be calculated by dividing the slope of the curve NBA 
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as a function of t by PA. The slope was obtained by a linear fit of the curve. The transition time 

was then given by 

1/BA BAk                (5) 

The overall folding kinetics 

To gain knowledge of the ensemble folding kinetics, we made a calculation of the fraction of 

the folded RNA as a function of time with KMC simulations. To this end, we started hundreds of 

KMC simulations from the unfolded states, and recorded the number of trajectories that reached 

the native states every 100ns. Finally, we fit the fraction of the folded as a function of time with a 

single exponential function, as shown in Figure S5(B). Double-exponential fitting was also 

performed but gave two relaxation time constants of the same, indicating that a 

single-exponential fitting is already sufficient. Therefore the figure for double-exponential fitting 

is not presented. 
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