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A. Fluctuations of pMEK and ppERK in response to PMA activation

Our analysis approximates signal transduction to a series of logarithmic stochastic chemical reactions. The
necessity of the log transformation was developed from our observed phospho-flow cytometry measurements
of phorbol 12-myristate 13-acetate (PMA) activated T cells (Fig. A). Visually, these log-scale data exhibit
ellipsoidal probability densities, a hallmark of normality. Quantitatively, the superiority of the log-scale can
be determined by a statistical test and goodness of fit measure. One such prescription is to compute Wilcoxon
signed-rank test comparing the square residuals from each of the normal and log-normal distribution fits,
followed by an analysis of the sum-square residuals. Application of this method indicated that the residuals
are not equivalent (p = 2.69 x 10~'4), and the sum-square residuals showed ~ 10 fold preference for the
log-normal distribution description. Overall, the necessity of the log transform can be assessed graphically.
In situations where a more precise definition is needed a statistical test and a goodness of fit can be used.

Activation of the Mitogen Activated Protein Kinase (MAPK) cascade has been shown to exhibit ultra-
sensitivity (steep transfer functions [1]) and feedback regulation [2, 3, 4]. Our data exhibits a steep activation
of ppERK by pMEK (ultrasensitive), unimodal, and graded response to PMA (Fig. A). Our data does not
exhibit the classic hallmarks of feedback, multistability or a non-monotonic average response to stimuli.
We are not the first to measure graded responses of the MAPK pathway to stimulation. The seminal work
of Huang and Ferrell demonstrated that a tiered, feedback free, biochemical cascade is sufficient to exhibit
ultrasensitive activation of MAPK in Xenopus oocyte extracts [2]. In context to single cell measurements
of T cells, Prasad et al. showed a smooth, unimodal, and monotonic increase of ppERK when activating T
cells with PMA. This was remarkably different to their observation of a bimodal response when activating
T cells through the T cell receptor (TCR) [4]. These studies and our own, demonstrate that the response of
MAPK to stimuli is diverse and context dependent.
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Figure A: (a) The transfer function from pMEK—ppERK, of PMA stimulated T lymphocytes. (b-d) Single
cell flow cytometry measurements for the respective PMA dose. The size and shade of blue represents the
probability density of cells at that location. These figures demonstrate that pMEK and ppERK are activated

unimodally and smoothly, qualitatively maintaining a bivariate log-normal distribution with increasing doses
of PMA.

B. Derivation of stochastic equations with parameter fluctuations in log-
variables

Our starting point for modeling biochemical reactions is the chemical Langevin equation
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where f;(z;;6;;) is the rate of production of chemical species j controlled by chemical species i, 6; is
the set of parameters that determine the function f;(xz;;6};), A; is the rate constant for the degradation of
species j, and €2 is the volume of the cell. The production rate f;(x;;6};) is a nonlinear, saturating function
representing enzymatic activity—e.g., the Hill equation. Writing the parameters as quantities that fluctuate



around their mean values, \; = (\;) + 0A;, and 0;; = (6;;) + 06;;, we have
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The inclusion of the parameter fluctuations in the square root terms assumes that the intrinsic fluctuations
&;(t) are faster than the parameter fluctuations 66;; and §\;. Writing x; as a quantity that fluctuates around
its mean value ((x) + dz;) we expand Equation S2 using the size of the fluctuations as the order parameter,
resulting in terms of order zero (those that do not depend on the fluctuating terms), those that depend on
the fluctuating terms to the first order, and those that depend on products of two or more fluctuating terms.
Disregarding the latter, we obtain
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This equation can be solved hierarchically, order by order. In the stationary state, the zero-th order terms
result in
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The first order terms give the equation for the fluctuations in species j
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Changing to logarithmic variables, let y; = In(z;) = In({z;) + dz;). Then to the first order in éx; we have
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and (y;) = In((z;)) given that (éz;) = 0. The logarithmic increment in species j is
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Dividing Equation S5 by (x;) we find the equations for the fluctuations in logarithmic scale
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Equation S8 is the chemical Langevin equation with fluctuating parameters in log-scale variables linearized
about a fixed point at (x;).

When the abundance of the chemical species represented by §2(z;) is large, the fluctuations represented
by the last term in Equation S8 are small. Formally this is attained by making the volume 2 tend to infinity.
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Then, the only remaining fluctuations in Equation S8 are the fluctuations in the parameters, which we model
as Wiener processes (i.e., fluctuations are fast compared with the half life of the species)

Aj) Oln f;
Z << j> nf] 59]1> — 5)\j = qj€; + qgea (59)
i#]

<9ﬂ> 8 In Hji

where the €’s are delta-correlated white noise processes. Approximating the left hand side by the sum of two
random variables with constant coefficients is consistent with our experimental observations (Fig. C). Note
that the parameter fluctuations are modeled by one term that is independent for each species (g;¢;) and one
term that is common to all species (gg€c) representing a global source of parameter fluctuations. Therefore,
we have the linearized system
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where aj; = (\;) %W. The general form of these equations for arbitrary regulatory topologies A

and normally distributed noise models Q is
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where dy; is the logarithmic increment in species ¢, the entries in the matrix A are a; as described above for
i # j and aj; = —)\;, and the entries of Q are independent of the log-concentrations.

In summary, log-scale fluctuations in the concentrations of reacting chemical species of sufficiently high
concentration follow Equation S11 therefore the analysis presented in the main text applies to fluctuations
in log-concentration of proteins.

C. INDUCE analysis under different topologies

C.1 Isolated link with global noise term

Model fits to experimental data were produced using a model of the form of
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where k is a synthesis rate constant and -A\; = —\y = —\ is a degradation rate constant. The simplification

of equal degradation rate constants modeling dephosphorylation of the protein species simplifies the calcu-
lations and improves intuition. Each variable §x; experiences an intrinsic noise &; and an extrinsic (global)
noise & 4, the magnitude of which is modulated by the coefficients ¢; and g, respectively. Solving Equation 8
for this model gives the covariance matrix
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where o = %\ and 8 = g—f\ are components of the variances that do not depend on the network connectivity,

2
and n, = g—g\ is the global noise term. When the global noise 7, — 0 Equation S13 is equivalent to
Equation 12 in the main text.



C.2 Fan-in network motif

Here we expand upon the presentation of the model equations in the Materials and Methods. In the fan-in
network motif, protein 2 is regulated by proteins 1 and 3.
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Equal degradation rate constants modeling dephosphorylation of the protein species simplifies the calcula-
tions and improves intuition. Solving Equation 8 for this model gives the covariance matrix entries
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C.3 Cascade network configuration

Here we expand upon the presentation of the model equations in the Materials and Methods. In the cascade
network motif, protein 3 regulates protein 1, and protein 1 regulates protein 2.
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Equal degradation rate constants modeling dephosphorylation of the protein species simplifies the calcula-
tions and improves intuition. Solving Equation 8 for this model gives the covariance matrix entries
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D. Parameters choices in Figure 2

Fig. 2 in the main text explores three network connectivities: isolated link, fan-in, and cascade. For the
isolated link, the transfer function in logarithmic variables is given by the Hill equation with parameters
v=10, K=3, n=4, A=0.8. The reaction rate k£ in Equation 11, which we rename ks here, is the instantaneous
slope of the transfer function in logarithmic variables. The effect of the parameter ko; is explored in the
parametric plots of the entries of the covariance matrix governed by Equation 11 with parameters « = 5 = 1.
For the fan-in connectivity in which species 1 and 3 regulate species 2, there are two transfer functions
giving ko1 and ko3. We model the overall activation of node 2 as the sum of in its inputs. The transfer
function giving ko is parameterized as above. The transfer function giving ko3 is parameterized by v=10,
K=2.5, n=4, A\=0.8. The equations for variance and covariance are as follows, witha = g =~ = 1.
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For the cascade connectivity in which species 3 regulates 1 and species 1 regulates 2, there are two transfer
functions giving k13 and ko;. The transfer function giving ko; is parameterized by v=10, K=6.5, n=4,
A=0.7, and the transfer function giving ki3 is parameterized by v=10, K=3, n=3, A=0.7. The equations for
variance and covariance are as follows, witha = 8 =~y = 1.
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E. Sensitivity analysis of variance-covariance loop formation

In a linear cascade the effect of an upstream node on variance/covariance loop formation depends on the
biochemical parameters. The degree of “openness” of the variance/covariance loop is reflective of disparate
sensitivities between interacting components. Fig. B illustrates that the loop is closed (and therefore unde-
tectable in real data) when, for example, the sensitivity of measured pathway components are similar. In
general, if loops are not observed in real data, one can assume that the link is isolated for the purpose of
causality inference which simplifies the analysis and suggests a prescription for applying to a large network
one link at a time. The measured activation of MAPK pathway in T cells follows this trend; the sensitivities
of cells to PMA stimulation are near identical and the variance/covariance plots do not exhibit the complex
looping feature.



a b c d
. e A ~
stimulus - r_ o , i
aco - @
% — —~ © - . © -
z 8% 5N So So -
477 “ o] 2w 7 2w 7
- o | - -
D s e e e © T T T T T 1T R e e s R e e e
0 2 4 6 8 10 0 2 4 6 8 10 0.0 1.0 20 0.0 1.0 2.0
y1 =log(x1) y1 Cov(y1, y2) Cov(y1, y2)
. h
stimulus ° 9
24 w | o |
N o
T ] h h
e se Se
71 < - g - g -
o - w —‘ w -
o 4 o - — o 4
T2 L L L T T T T 1 T T T 11
0 2 4 6 8 10 0 2 4 6 8 10 02 4 6 8 12 02 4 6 8 12
¥3 y3 Cov(y1, y2) Cov(y1,y2)
i j k |
e
o 4 4
Ny <%
e SN g7 ]
< s 1 2 &
o 4 -
o o —‘ o -
T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10 0 5 10 15 0 5 10 15
y3 y3 Cov(y1,y2) Cov(y1, y2)
m n o P
o ;
© 4 4
< © - ::8 - g% -
] § A g A
~ — 8 - S
- y2 gp—
© o - o -
L T T T T 1 T T T T 1
0 2 4 6 8 10 0 2 4 6 8 10 0 5 10 20 0 5 10 20
y3 y3 Cov(y1,y2) Cov(y1, y2)
r S

Var(y1)
0 20 40
[ R |
Var(y2)
0 20 40
T R |
N -

Yi
0 2 4 6 8 10
| N I T
NQ
<<
!
ajj
00 10 20 30
| N I T I |

o -
N -
~ -
o -
o -
=]
(=}
N

T T T T T T T T
4 6 8 10 0 5 10 15 0 5 10 15
y3 Cov(y1, y2) Cov(y1, y2)

<
@

Figure B: Sensitivity analysis of V-C loop formation. (a-d) Analysis of a single isolated network link is
reprinted from Fig. 2 in the main text. From left to right, (a) the Hill equation model of log concentration is
color registered to 2. Compare this series of panels to (m-p). (b) The derivative of the transfer function is the
network connection strength a1, which peaks at half-maximal activation. (c-d) Variance versus covariance
shows no loops. (e-h) Analysis of a linear cascade reprinted from Fig. 2 in the main text. Variance versus
covariance plots have loops. (i-1) For the same connectivity and different biochemical parameters, loops
in the variance versus covariance plots become more “closed.” (m-n) Biochemical parameters demonstrat-
ing complete closure of variance versus covariance loops. (n) The connection strengths of the two transfer
functions peak at the same concentration of ys, the condition for loop closure. (q-r) A biochemical param-
eterization demonstrating a reversal of loop directions relative to the previous examples. (r) Note that the
relative ordering of the connection strength peaks with respect to ys are reversed from previous examples.



F. Data Analysis

To facilitate comparing different dose-response experiments and/or combining data from multiple dose-
response experiments in a single analysis, fluorescence values were normalized in the linear scale by the
half-maximum activation constant, X and maximum amplitude of the response, A, using a Hill function.

xn

f= Am +b (S18)
The historical E. coli dataset consisted of two replicates of the IPTG dose-response which we normalized and
combined for our analysis. For Gene 1 the Hill coefficient (n) was constrained to be positive and for Gene 2
constrained to be negative. The data amplitude was then normalized by parameter A and the concentration
of IPTG was normalized by K of Gene 1. Normalized data from two data sets were then combined such
that Gene 1 and Gene 2 expression are functions of the rescaled IPTG concentrations (Fig. 3 in main text).

We applied the same procedure to normalize the T-cell dose-response to PMA using positive Hill co-
efficients. It was not necessary to combine multiple T-cell dose-response experiments because we finely
sampled the dose response curve using small increments of PMA concentration.

Following normalization all subsequent analysis was performed on the logs florescence values for the
E. coli and T-cell experiments. The entries of the covariance matrix were estimated at each dose using
curve-fitting by least-squares. We fit the bivariate normal distribution to the log-florescence values. Noise

parameters, «, 3, and 7, were estimated by the least-squares fit of the following equation.
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When the global noise 1, — 0 Equation S19 is equivalent to Equation 12 in the main text.

G. Ciriteria to address the assumption that Q is independent of the stimulus

In our derivations we assumed that the elements of the noise strength matrix Q were constant with respect
to the strength of the stimulus. To support this assumption in the context of the data analyzed in this paper,
we studied the dependence of the noise coefficient 8 (proportional to the square of the matrix element ¢o
representing the intrinsic noise of ppERK, see Eq. 13) as a function of the phosphorylation level of ERK.
From the expression for o3 in Eq. 13 we can see that the variance of ppERK includes both the intrinsic noise
B, the global noise 71, and the noise propagated to ppERK from pMEK. Fig. C shows that the dependence
of 5 on ppERK is indeed very mild. The range of the variation of 3 over all values of ppERK is 5 times
smaller than the changes of the overall variance of ppERK. Therefore most of the variation in the variance
of ppERK is due to the fluctuations in ppERK propagated from pMEK.
In order to decide if INDUCE is applicable in specific situations we next present a condition that is
necessary for the constant Q requirement. We will use the case of an isolated link with intrinsic and global
noise terms which was discussed in Section 3.1. In particular we will focus on the noise terms 5 + 7,
representing a combination of the intrinsic noise in ppERK and the global noise. From Eq. 13 the variance
of ppERK can be expressed as ,
o2 =B+, <1—2"122> — 702 (S20)

g1 g1
Let’s now consider two extreme conditions: one in which the stimulus s is the lowest (sg = 0) and the
other in which the stimulus is maximum (s,,4.). It is usually the case that these two extremes correspond to
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Figure C: The noise coefficient S (proportional to the square of the matrix element ¢s representing the
intrinsic noise of ppERK, see Eq S13) plotted as a function of the phosphorylation level of ERK. § is
estimated by linear regression of rearranged Eq. S20 (correlation coefficient 0.77). A linear fit of 3 as
a function of phosphorylated ERK levels exhibits a slope of -0.03 and therefore the noise is only mildly
dependent on the signal strength. The blue symbols are the variance of the total fluctuations of ppERK that
includes the noise acting directly on ERK and the fluctuations propagated from MEK.

inactive and saturated responses of the biochemical reaction under study, and in this sense one should expect
12 =~ 0. In this case

U%(Smax) - 03(50) = [B(8maz) + Ng(Smaz)] — [B(50) + ng(s0)] (S21)

If 5 and 7, were constant, the above equation should be approximately equal to 0. Indeed this is what we
observe in Figs. 3D and 4D, where for the minimum and maximum values of the stimulus, ag coalesce and
the covariance attains the smallest absolute values. Fig. D illustrates this effect for the isolated two node
model in which y; — y2. The color in the figure represents the strength of the stimulus, with blue and red
indicating low and high stimulus respectively. The transfer function of the reaction is shown in Fig. Da.
If the coefficients in the noise matrix are constant, as the theory assumes, we should observe a variance-
covariance plot of the type shown in Fig. Db. If the noise coefficients vary with the stimulus, for example
the noise increases with the stimulus, the variance covariance plot would look like Fig. Dc, for which the
values of var(y2) at the minimum and maximum stimuli are clearly different.

To make this criterion more quantitative, we have to compare the difference in the 5 and 7, coefficients
shown in Eq. 21 to the overall range of variation o3 across all the stimuli, of which 3 and 1)y are components.
The use of INDUCE would be justified if the variations in 3 + 7, are only a small component of the overall
variation in 3. Let’s denote 03 ,,,,, (usually realized at intermediate levels of stimulation) and 03, the
maximum and minimum values of o3 across all experiments. If 3+ 74 18 approximately constant, we should
have

A[B + ] _ 3 (Smaz) — 3 (50)

2 — 2 2
AUQ 02 maz — 92,min

[5+779]

<1 (S22)

Therefore we recommend as a criterion to not use INDUCE if is bigger than, say, 0.3.
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Figure D: Transfer function (a), variance-covariance plot for stimulus-independent noise coefficients (b)
and variance-covariance plot for stimulus-dependent (monotonically growing) noise coefficients (c) for the
isolated two node model. The color code in the curves represent the strength of the stimulus, with blue
indicating low and red high stimulation. For small (in absolute value) covariance values, the behavior of
the curves for stimulus-independent coefficients (b) is quite different from the case of stimulus-dependent
coefficients (c).
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