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Supporting Information 2

Theorem 0.0.1. If Ry > 1, System (1) in the main text exhibits uniform weak persistence; that is, there

exists an € > 0 such that
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whenever 2?21 I;(0) + 2z;(0) > 0.

Proof. By way of contradiction, suppose limsup,_, ., Z?Zl I;(t) 4+ #(t) < e for all € > 0. Then, I;(t) <e
and z;(t) < e for all ¢, and for each i = 1,2,...,Q. From System 1 in the main text, we obtain the

following inequalities:
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where &;(€) = m;ab(N — €) and 7;(€) = ack(e79" — ¢€). Note that
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is a linear system of 2Q equations, and can be written in the form W’ = J(e)W, where

W = (y17y27"'7yQ7X1aX27'~~vXQ)T7

and
(o) = Jia Jiz(e) |
Jaa(e)  Jao

where each J; ; is a @< Q block matrix defined by Ji 1 = diag(—g, —g,...,—g), J1,2(€) = diag(m (¢),n2(€), . ..
J2,1(€) = diag(£1(e), &2(e), - - -, €q(e)), and
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Because &;(0) = m;abN = «; N and 1;(0) = N =N J(0) is precisely the Jacobian of System (1) in

the main text evaluated at the disease-free equilibrium. Furthermore, I;(t) > X;(¢) for all ¢ and for each

i, provided they have the same initial conditions.
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Let F(e) and V be such that F(e) = ,and V = . Then, J(e)

JQJ(E) 0 O J272

F(e) - V.
Let R(e) := (p(F(e)V1))2, the square of the spectral radius of the matrix FV =1, Then, lim._,o R(¢) =
Ry. Because Ry > 1, this implies that there exists an €’ > 0 such that R(¢’) > 1. Because F'(¢’) is nonneg-

ative and V is a non-singular M-matrix, p(F(¢')V~1) > 1 implies that at least one eigenvalue lies in the

;1Q(€)),
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right half of the complex plane. Hence, the spectrum of J(¢’) has an eigenvalue with positive real part,
implying that lim;_, I;(t) = 0o or lim;_, 2;(t) = oo for some ¢, which is a contradiction. Therefore,

the conclusion of the theorem holds.



