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Text A The Pearson Correlation Coefficient

Let x, y ∈ Rn with n ≥ 3. Then the Pearson Correlation Coefficient (PCC) ρ between x
and y is defined as:

ρ(x, y) =

n∑
i=1

(xi − x)(yi − y)√
n∑
i=1

(xi − x)2

√
n∑
i=1

(yi − y)2

,

where x, y denote the arithmetic means
1

n

n∑
i=1

xi and
1

n

n∑
i=1

yi respectively.

Define two new random variables x̃ and ỹ as follows:

x̃ =
x− x

σx
√
n− 1

, and ỹ =
y − y

σy
√
n− 1

, (S1)

where σx and σy are the standard deviations of x and y.
From the definition, the following identities immediately descend:

n∑
i=1

x̃i = 0 =

n∑
i=1

ỹi ,

n∑
i=1

x̃2i = 1 =

n∑
i=1

ỹ2i ,

ρ(x, y) = ρ(x̃, ỹ) =

n∑
i=1

x̃ỹ . (S2)
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Since x̃ (and ỹ) lies on the unit sphere because ‖x̃‖ = 1, Equation (S2) yields that

n∑
i=1

x̃i =

n∑
i=1

xi − x
σx
√
n− 1

=
1

σx
√
n− 1

n∑
i=1

(xi − x)

=
1

σx
√
n− 1

[(
n∑
i=1

xi

)
− nx

]

=
1

σx
√
n− 1

(nx− nx)

= 0 ,

and the same holds for ỹ, too.
Thus we can rephrase Equation (S2) as follows:

Proposition S1. Let x, y, x̃, ỹ be as in Equation (S1). Then x̃, ỹ ∈ Sn−1 ∩H ' Sn−2,

where H is the vectorial hyperplane defined as

n∑
i=1

wi = 0 and wi are the coordinates of

Rn.

An example for n = 3 of the situation described in Proposition S1 is shown in
Section Text B.

To prove now Equation (2), we first combine Equation (S1) and Equation (S2) to
obtain that

ρ(x, y) = ρ(x̃, ỹ) = x̃ỹ = cosβ , (S3)

where β is the angle between the two vectors x̃ and ỹ. Equation (S3) and
Proposition S1 yield that P (|ρ(x, y)| > p) is the proportion between the area of the
spherical cap in n− 2 dimensions included within an angle β from x and the whole
surface of the (n− 2)-dimensional sphere [1]. A compact formula for the area Acap

n−1(r)
of a (n− 2)-dim spherical cap is given in [2] as:

Acap
n−1(r) =

2π(n−2)/2

Γ
(
n−2
2

) rn−2 ∫ β

0

sinn−3(ϑ)dϑ ,

and, since the area of the whole surface is

Sn−2(r) =
2π(n−1)/2

Γ
(
n−1
2

) rn−2 ,
the thesis follows from the position r = 1.

In Proposition S1 the transformed vectors are assumed to be uniformly distributed
on the spherical surface. This assumption holds in the case of a normal distribution, but
it does not hold in general. However, in the following paragraph we show that it is a
good approximation, since x and y are independent. In fact, Equation (2) can be
generalised to other distributions [3–6], when data skewness can be bounded [1].

Let Gδ(n, p) be an empirical distribution generated by k couples of two vectors
x, y ∈ Rn sampled according to a given distribution function δ. Let then

Et(F,G
δ) =

t

√∫ 1

0

|F (n, p)−Gδ(n, p)|tdp
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be the t-error function evaluating the difference between the theoretical distribution
F (n, p) and the empirical distribution Gδ(n, p). Hereafter we report the results of the
simulations for k = 50000 and n = 8, 20, 100, where δ is one of the following three
distribution functions:

• U(min,max), the uniform distribution in [min,max];

• N(µ, σ), the normal distribution with mean µ and standard deviation σ;

• L(µlog, σlog), the lognormal distribution with mean-log µlog and standard
deviation-log σlog.

In particular, in Table S1 we list the values of E2(F,Gδ) and in Figure S1 we display
the curves of the Cumulative Distribution Functions (CDF) of Gδ(n, p) corresponding
to the three functions δ, separately for the three different values of n = 8, 20, 100. The
distribution parameters we used are min = 0,max = 0, µ = 0, σ = 1, µlog = 2, σlog = 3.
Regardless of the value of n, the empirical distribution fits the exact formula
Equation (2) when x and y are uniformly sampled, while it does not fit the same
equation when the two vectors come from extremely skewed distributions such as the
lognormal.

Table S1. Error function E2(F,Gδ), for n = 8, 20, 100 and different
distributions δ = U(0, 1), N(0, 1), L(2, 3).

Gδ(8, p)
U(0, 1) N(0, 1) L(2, 3)

U(0, 1) 0.001832 0.00137 0.021202
N(0, 1) 0.001195 0.00142 0.001432
L(2, 3) 0.022961 0.00139 0.080803

Gδ(20, p)
U(0, 1) N(0, 1) L(2, 3)

U(0, 1) 0.0016851 0.0007752 0.0248819
N(0, 1) 0.0008008 0.0014559 0.0008381
L(2, 3) 0.0238804 0.0011422 0.1038271

Gδ(100, p)
U(0, 1) N(0, 1) L(2, 3)

U(0, 1) 0.0006978 0.0008244 0.015630
N(0, 1) 0.0009281 0.0007388 0.001441
L(2, 3) 0.0159969 0.0014090 0.104998
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(c) n=100
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Figure S1. Cumulative Distribution Functions relative to the absolute value of
Pearson correlation between 50,000 instances of pairs of n-dimensional vectors sampled
from three different distributions Uniform (δ = U , min = 0, max = 1, black line),
Normal (δ = N , µ = 0, σ = 104, green line) and LogNormal (δ = L, µlog = 2, σlog = 3,
purple line), compared with the theoretical curve F (n, p) (red line), for the three cases
n = 8 (a), n = 20 (b) and n = 100 (c). In all cases, the red curve of F (n, p) and the
black curve for the uniform distribution are almost coincident.
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Text B A 3-dimensional example of Proposition S1

Consider a dataset Y consisting of n = 3 samples described by m = 100 genes. Then Y
can be represented by 100 points in [0, 1]3 ⊂ R3 as shown in Fig. S2(a). The new
variables are built through a two-stages procedure applied to each gene. First the mean
is subtracted, so the transformed dataset lies on the hyperplane H described in
Proposition S1 as displayed in Fig. S2(b,c). Finally. each gene is normalized to unitary
variance, and the resulting dataset lies on Sn−1 ∩H, which is the circumference in
Fig. S2(d).
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Figure S2. Transformation of the initial dataset preserving the Pearson
correlation: (a) Original dataset (b,c) Mean substraction (d) Variance normalization.
In green the hyperplane H.
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Text C Main moments of the Pearson correlation

Finally, we conclude deriving the mean and the variance of the function |ρ| starting
from Equation (2). The density function f(n, p) can be computed as

f(n, p) =
2√
π

Γ
(
n−1
2

)
Γ
(
n−2
2

) (1− p2)
n−4
2 .

Using the above expression for f(n, p), the two moments follow straightforwardly:

E(|ρ|, n) =

∫ 1

0

pf(n, p)dp =
2√
π

Γ
(
n−1
2

)
(n− 2)Γ

(
n−2
2

)
Var(|ρ|, n) =

∫ 1

0

p2f(n, p)dp− E2(n, p) =
1

n− 1
−

4Γ2
(
n−1
2

)
π(n− 2)2Γ2

(
n−2
2

) .
Text D The restricted secure threshold p̃k

We list here the analogue of Table 1 of Main Text for the restricted secure threshold

p̃k = min
p∈(0,1]

{
F (n, p)

m(m− 1)

2
+ k

√
(1− F (n, p))F (n, p)

m(m− 1)

2
< 1

}
,

for k = 2 and k = 5.

Table S2. A subset of values of the secure threshold p̃2 for different number
of samples m and genes n.
HH

HHHn
m

100 500 1000 2000 10000 50000 100000

8 0.97584 0.99179 0.99484 0.99675 0.99889 0.99962 0.99977
15 0.86282 0.91826 0.93437 0.94723 0.96810 0.98065 0.98439
20 0.78966 0.85726 0.87876 0.89686 0.92883 0.95068 0.95784
30 0.68082 0.75573 0.78151 0.80425 0.84759 0.88074 0.89256
50 0.55034 0.62269 0.64902 0.67302 0.72135 0.76137 0.77651
75 0.45887 0.52436 0.54881 0.57145 0.61820 0.65834 0.67394
100 0.40153 0.46116 0.48369 0.50471 0.54865 0.58703 0.60214

Table S3. A subset of values of the secure threshold p̃5 for different number
of samples m and genes n.
HHH

HHn
m

100 500 1000 2000 10000 50000 100000

8 0.98553 0.99508 0.99691 0.99805 0.99934 0.99978 0.99986
15 0.89287 0.93585 0.94842 0.95849 0.97486 0.98474 0.98768
20 0.82530 0.88080 0.89858 0.91361 0.94025 0.95853 0.96454
30 0.71934 0.78401 0.80647 0.82636 0.86445 0.89373 0.90420
50 0.58686 0.65162 0.67541 0.69720 0.74130 0.77803 0.79198
75 0.49164 0.55125 0.57373 0.59463 0.63803 0.67552 0.69015
100 0.43124 0.48595 0.50683 0.52640 0.56752 0.60368 0.61796
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Text E Functional relations undetected by
correlation networks

Correlation networks, like other univariate methods, are unable to capture relations
between genes when the independence hypothesis does not hold. In these situations,
quite common throughout -omics studies when the number of genes are much larger of
the number of samples, the correlation values (e.g., PCC) between expressions result
negligible or small even when the corresponding genes are (functionally) related.

Hereafter we show three cases demonstrating the aforementioned behaviour.

1. Toy model Consider a simple system with four genes g1, g2, g3, gt, where the
expression of gene gt depends on the expression of {gi}i=1,2,3 according to the
linear rule gt = g1 + 1

2g2 + g3. Moreover, suppose that the expression of g1, g2 and
g3 is respectively uniformly, normally and gamma distributed, i.e. g1 ∈ U(0, 1),
g2 ∈ N(1, 0) and g3 ∈ Γ(a = 0.1, s = 1), where the density of the gamma
distribution is given by f(x) = 1/(saΓ(a))xa−1e−

x
s . Finally, randomly extract the

expression of g1, g2, g3 on 100 samples, compute PCC(gi,gt) and repeat the
experiment 10000 times. Although, by definition, gt is strongly functionally
related to g1, g2 and g3, the corresponding average PCC are quite low, namely

µ σ
PCC(g1,gt) 0.70 0.12
PCC(g2,gt) 0.59 0.15
PCC(g3,gt) 0.28 0.27

and thus the links between gt–g2 and gt–g3 are likely to be not detected in
coexpression networks.

2. ODE model A similar situation occurs when the dynamics along time of the
gene expressions is (more realistically) driven by a system of ordinary differential
equations. Consider for instance the toy model on three genes g1, g2 and g3
described in [7]: g1 is repressed by g3, g2 is activated by g1 and g3 is activated by
both g1 and g2.

ġ1 = k1,s
1

1 + k1,3g3
− k1,dg1

ġ2 = k2,s
k2,1g1

1 + k2,1g1
− k2,dg2

ġ3 = k3,s
k3,1g1 · k3,2g2

(1 + k3,1g1)(1 + k3,2g2)
− k3,dg3 ,

where the reaction rate constants are set as follows: k1,s = 2, k2,s = 2, k3,s = 15,
k1,d = k2,d = k3,d = 1, k2,1 = k3,1 = 1, k3,2 = 0.01, k1,3 = 100. Setting to zero all
the initial conditions and solving the above ODE system for the time interval
t ∈ [0, 5] and time step δt = 0.01 we obtain three time series on 501 points
corresponding to the dynamics of the gene expressions for g1, g2 and g3, whose
curves are plotted in Fig. S3. Again, despite the strong functional relation among
g1, g2 and g3, some of the corresponding PCC values are quite small, namely
PCC(g1,g2)=0.085 and PCC(g1,g3)=-0.288, while PCC(g2,g3)=0.927 for the only
link which is likely to be inferred by the coexpression approach.

3. A promoteromic example The third example comes from the mammalian
promoterome atlas of the FANTOM5 project [8]. Consider the time course on 16
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Figure S3. Example 2 Time series of the expression of genes g1, g2 and g3 for the
ODE synthetic model.

time points (0-480 minutes) of the expression of the three genes FOS, JUN and
FOSL1, as shown in Fig. S4. Gene FOSL1 is regulated by both FOS and JUN:
nonetheless, correlation between the target and the regulatory genes is negligible,
namely PCC(FOSL1,FOS)=-0.22 and PCC(FOSL,JUN)=0.17, so that both links
FOSL1–FOS and FOSL1–JUN are marked as non significant by a coexpression
network approach.
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Figure S4. Example 3 Time series of the expression of genes FOS, JUN and FOSL1
for the FANTOM5 mammalian promoterome data.
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