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 2 

Appendix 1: Rapid equilibration between air-saturated water surrounding newly 3 

cavitated vessels 4 

 5 

(1) Final equilibrium of gas pressure 6 

Henry’s law states that the concentration CG (mol·L-1) of a gas species ‘G’ dissolved in 7 

water is in equilibrium with the partial pressure 𝑃𝐺
∗  of the gas species in air. 8 

 𝐶𝐺 = 𝐾𝐺𝑃𝐺
∗ (A1.1) 

, where KG (mol·L-1·atm-1) is the Henry’s law constant. 9 

If this is dissolved in a finite volume of solution, (1-α)V, then the number of moles 10 

of solute ns in solution is 11 

 𝑛𝑠 = (1 − 𝛼)𝑉𝐶𝐺 = (1 − 𝛼)𝑉𝐾𝐺𝑃𝐺
∗ (A1.2) 

The two main gases in Eq. A1.2 are O2 and N2 with KG values of 1.3x10-3 and 8.1x10-4 12 

respectively and the partial pressure of O2 and N2 in air are 0.21 and 0.78 atm. If a 13 

fraction, α, of volume V is embolized and no additional air is added to the system then ns 14 

moles of gas will be divided into n1 moles of gas in the cavitated volume and n2 moles in 15 

the water such that ns= n1+n2. 16 

If PG is the partial pressure of gas in the cavitated volume (αV) then the ideal gas law 17 

can be used to yield 18 

 
𝑛1 =

𝛼𝑉𝑃𝐺

𝑅𝑇
 (A1.3) 

, where RT = the gas constant times Kelvin temperature, and the number of moles in the 19 

liquid will be given by 20 

 𝑛2 = (1 − 𝛼)𝑉𝐾𝐺𝑃𝐺 (A1.4) 

Equating Eq. A1.2 to A1.3 + A1.4 and solving for PG yields Eq. 1 in the introduction. 21 

 
𝑃𝐺 =

(1 − 𝛼)𝐾𝐺𝑃𝐺
∗

𝛼
𝑅𝑇⁄ + (1 − 𝛼)𝐾𝐺

 (A1.5) 

The atmosphere consists of about 78% nitrogen and 21% oxygen, hence the final 22 

equilibrium bubble pressure should be the sum of the equilibrium pressure of nitrogen, 23 

the equilibrium pressure of oxygen and a full vapor pressure, which is a function of 24 



temperature (3.2 kPa at 298K). 25 

 26 

(2) Diffusion time (cylindrical diffusion from bulk water) 27 

The tempo of approach to equilibrium Eq. A1.5 can be computed by Fick’s Law, which 28 

indicates that the radial diffusion rate of the gas species ‘G’ is proportional to the 29 

concentration gradient were diffusion occurs: 30 

   

 
𝐽𝐺 = 2𝜋𝐷𝐺 ∙

𝐶2 − 𝐶1

𝑙𝑛(𝑏/𝑎)
 (A1.6) 

, Eq. A1.6 describes the diffusion in a unit length of cylinder where JG is the diffusion rate 31 

in mol·s-1 per m of cylinder and DG is the diffusion coefficient of gas; Eq. A1.6 describes 32 

the diffusion in a cylinder, where C2 and C1 are the concentration at the cylindrical 33 

surfaces with radius b and a, respectively (Crank, 1975). 34 

 35 

Figure S1. Model of cylindrical diffusion in stem. R and r are the radius of water (R = 36 

maximum radius) surrounding the vessel (r = vessel radius) , where ri is the external 37 

radius of the ith layer of the N layers. 38 

 39 

The cylinder was divided into N layers, each of which has a thickness of ∆𝑥 = (𝑅 −40 

𝑟)/𝑁. The boundaries of the ith layer of water [𝑟𝑖−1, 𝑟𝑖] are [𝑟 + (𝑖 − 1)∆𝑥, 𝑟 + 𝑖∆𝑥]; the 41 



distance of half volume site of the layer to the center of the vessel, xi, is √(𝑟𝑖−1
2 + 𝑟𝑖

2)/2. 42 

At a time interval ∆𝑡, the gas diffusion rate in mol s-1 that diffuses out from the ith layer 43 

to i-1th layer will be: 44 

 
∆𝑛𝑖 = 2𝜋𝐷𝐺 ∙

𝐶𝐺,𝑖 − 𝐶𝐺,𝑖−1

𝑙𝑛(𝑥𝑖/𝑥𝑖−1)
∙ 𝐿 ∙ ∆𝑡 (A1.7a) 

, where CG,i is the gas concentration of gas species ‘G’ in ith layer, which can be 45 

computed by Eq. A1.1, and CG,0 is the equilibrium gas concentration in the cavitated 46 

vessel and L is an arbitrary length of the cylinder were diffusion occurs. Eq. A1.7 is used 47 

to compute the stem increase in dissolved gas concentration in the ith cylindrical annulus 48 

in Fig. S1. The concentration change at ith layer would be (∆𝑛𝑖+1 − ∆𝑛𝑖)/𝑉𝑖, where 𝑉𝑖 =49 

2𝜋(𝑟𝑖
2 − 𝑟𝑖−1

2 )𝐿 so when this equation is substituted into A1.7 the value of L cancels out 50 

as does the 2. So the equation for the increase in concentration in time step t is: 51 

 
∆𝐶𝐺,𝑖 =

𝐷𝐺∆𝑡

(𝑟𝑖
2 − 𝑟𝑖−1

2 )
∙ [

𝐶𝐺,𝑖+1 − 𝐶𝐺,𝑖

ln(𝑥𝑖+1 𝑥𝑖⁄ )
−

𝐶𝐺,𝑖 − 𝐶𝐺,𝑖−1

ln(𝑥𝑖 𝑥𝑖−1⁄ )
] (A1.7b) 

For initial condition at time 0 it is assumed that the cavitated vessel is filled with 52 

water vapor and the gases that were originally in the cavitated vessel before cavitation 53 

event happen (1.2 kPa N2 and 0.6 kPa O2). Therefore the gas pressure can be estimated by 54 

accumulating gas moles: 55 

 
𝑃𝐺,𝑡 = 𝑃𝐺,𝑡−∆𝑡 +

∆𝑛1,𝑡𝑅𝑇

2𝜋𝑟𝐿
 (A1.8) 

, where 𝑃𝑡 and 𝑃𝑡−∆𝑡 represent the gas pressure of gas species ‘G’ at time t and 𝑡 − ∆𝑡 56 

respectively, ∆𝑛𝑖,𝑡 is the gas moles exchange in a time interval ∆𝑡 at the time t. 57 

 The air pressure in vessels results from the combined diffusion of O2 and N2 which 58 

have different diffusion coefficients. Using an average vessel radius at 20 μm, the half 59 

time (T50) and 99% equilibrium time (T99) can be calculated and is shown in Fig. S2A, 60 

hence we can conclude that the initial bubble pressure can be reached in a short period of 61 

time. 62 



 63 

Figure S2. Relationship between α/radius and the half time and 99% equilibrium time. 64 

T50 and T99 refer to the half time (solid square) and 99% equilibrium time (solid triangle), 65 

respectively. Panel A: half time and 99% equilibrium time of the vessel with diameter of 66 

20 μm when α range from 0.01 to 0.10. And in panel A α represents the fraction of 67 

embolized water volume in the stem. Panel B: half time and 99% equilibrium time of the 68 

vessel with diameter range from 5 to 30 μm when α is 0.05. 69 

 70 

(3) Mass flow from the biggest pit pore 71 



The following calculations demonstrate that mass flow of air through the biggest pit pore 72 

that seeds cavitation is very slow. According to the air-seeding hypothesis (Cochard et al., 73 

1992; Sperry et al., 1996), an air bubble is pulled though the largest pit membrane pore 74 

connecting an embolized vessel to water-filled vessel. In this calculation let us assume the 75 

pore length, L, is 1 μm and the pore diameter, D, is 14.4 nm. A pore diameter this size 76 

would seed a cavitation at a tension of 2 MPa if the contact angle of the air-water 77 

interface with the pore wall is 0o and at lesser tension if the contact angle is >0o. This 78 

calculation assumes the pore remains filled with air and that pneumatic flow of air occurs 79 

indefinitely driven by the pressure difference between one vessel filled with air at 80 

atmospheric pressure to a recently cavitated vessel initially at 0 pressure. 81 

Poiseuille’s law for pneumatic flow is: 82 

 
𝐹𝑥 =

𝜋𝜌

128𝜂
∙ 𝐷4 ∙

𝑑𝑃𝑥

𝑑𝐿
 (A1.9) 

, where Fx is the mass flow rate (Kg·s-1), ρ is the density of air, η is the viscosity of air 83 

(which is nearly constant when Px < 500 kPa). According to Cohen et al. (2003), the air 84 

conductivity can be computed by 𝐶 =
𝑄𝐿𝑃

𝐴∆𝑃𝑃̅
⁄ , where Q is the volume flow rate (m3·s-85 

1), L is the length of a pipe, A is the cross-section area of the pipe, P is the pressure where 86 

Q is measured, ∆𝑃 is the pressure difference across the pipe and 𝑃̅ is the average pressure 87 

which equals to the mean of pressures at the two ends of the pipe (Pin and Pout below). So 88 

the atmospheric volume flow rate FV,x will be: 89 

 
𝐹𝑉,𝑥 =

𝜋𝐷4

256𝜂𝑃𝑏𝑎𝑟𝑜𝐿
∙ (𝑃𝑜𝑢𝑡

2 − 𝑃𝑖𝑛
2 ) (A1.10) 

And the maximum flow rate Fv,max will be the flow rate when Pout is Pbaro and Pin is 0. 90 

And the volume of the vessel is 𝑉𝑉 = 0.25 ∙ 𝜋𝐷𝑣
2 ∙ 𝐿𝑣, where Dv and Lv are the diameter 91 

and length of the vessel. The average volumes of vessel lumen are 1.54E-11 m3 (Acer 92 

mono) and 5.94E-11 m3 (Populus 84K), and the maximum volume flow rate (at 93 

atmospheric pressure) are 2.89E-17 m3·s-1 for both species on the assumption of same pit 94 

pore size. So the half time for an vacuum-filled vessel to obtain a bubble pressure about 95 

50 kPa from the biggest pit pore will be 𝑇ℎ𝑎𝑙𝑓 = 𝑙𝑛2 ∙ 𝑉𝑣𝑒𝑠𝑠𝑒𝑙/𝐹𝑉,𝑚𝑎𝑥. And the Thalf for an 96 

Acer mono vessel is about 3.1 days and Thalf for a Populus 84K vessel is about 11.9 days. 97 



 98 

 99 

Appendix 2: The Hydraulic Recovery Model: a model for estimating bubble 100 

pressure in vessels from measurements of stem kh versus decreasing Tc in a cavitron. 101 

The case of bubble pressure equilibrium in a vessel without pressure gradient has been 102 

discussed in Eq. 2 to 6 in the main paper. Below we discuss how the situation changes 103 

when there is a pressure gradient. The primary problem is to arrive at computational code 104 

that can transform Fig. 2 (the conductivity of a single vessel without a pressure gradient) 105 

to Fig 3 (the conductivity of many vessels in a stem segment in an environment with a 106 

quadratic pressure gradients), and also the case of linear positive pressure gradient. Linear 107 

pressure gradients arise when a conductivity apparatus is used in conjunction with a 108 

Sperry rotor whereas quadratic pressure gradients arise when measuring conductivity in a 109 

spinning Cochard rotor. 110 

Once a computational algorithm is achieved for getting a stem segment conductivity, 111 

kh, at any given initial bubble pressure (𝑃𝑏
∗) assigned at a high Tc values, the next step is 112 

use a curve fitting algorithm with root mean square error (Erms) calculations to arrive at 113 

the value of 𝑃𝑏
∗ that best fits (minimizes Erms) experimental data of kh versus Tc for all the 114 

lower values of Tc during an experiment like those shown in Figs. 7 and 8. 115 

 116 

(1) Pressure equilibrium between water and air in a single vessel with superimposed 117 

pressure gradient 118 

In a centrifuge, there can be a static pressure gradient without flow of water wherein 119 

the most negative pressure occurs at the axis of rotation, and the pressure falls as a 120 

quadratic function of distance from the center (𝑃𝑤 =
𝑥2−𝑅2

𝑅2
∙ 𝑇𝑐 + 𝑃𝑏𝑎𝑟𝑜, where x is the 121 

distance to the rotation axis). The centrifugal force will push the air bubble to the rotation 122 

axis hence the water will flow into the distal end of the vessel when 𝑃𝑤 + 𝑃𝑐 > 𝑃𝑏. In a 123 

conductivity apparatus (gravity flow system or flow meter), the water pressure will 124 

decrease linearly with distance in a stem and the bubble will tend to be oriented with the 125 

bubble at the low-pressure end of the vessel. However bubbles can ‘stick’ in small pipes 126 



by a process similar to the static coefficient of friction so the bubble could be anywhere in 127 

the vessel although for simplicity it is illustrated at the low pressure end of the vessel. 128 

In an embolized vessel that is filled with an air bubble at a pressure of 𝑃𝑏
∗ under high 129 

tension in centrifuge, the bubble will collapse when the tension is decreased and the 130 

pressure equilibrium is achieved as shown in Fig. S3, where the meaning of Rdv and Lw is 131 

defined. At any given pressure gradient, the water and bubble lengths (or volumes) in the 132 

cavitated vessel finally equilibrate. The water pressure can be computed by a quadratic 133 

function in Cavitron system and from a linear function in a conductivity apparatus; the 134 

bubble pressure can be obtained by applying the ideal gas law as in Eq. 2. Eq. A2.2a gives 135 

the linear pressure gradient in a conductivity apparatus, and Eq. A2.2b gives the quadratic 136 

pressure gradient in a cavitron. 137 

 𝑃𝑤 = 𝑃0 − 𝜆𝐿𝑤 (A2.2a) 

 𝑃𝑤 = 𝑃𝑏𝑎𝑟𝑜 + (
(𝑅𝑑𝑣 − 𝐿𝑤)2

𝑅2
− 1) ⋅ 𝑇𝐶  (A2.2b) 

, where  is the coefficient of the pressure gradient, R is the maximum distance from the 138 

water level to the axis of rotation, 𝑃𝑤 is the water pressure at the air/water interface at 139 

final equilibrium. The air bubble in the vessels are compressed hence the bubble pressure 140 

at final equilibrium 𝑃𝑏 can be derived by the ideal gas law: 141 

 𝑃𝑏 =
𝐿𝑣

𝐿𝑣 − 𝐿𝑤

∙ 𝑃𝑏
∗ (A2.3a) 

. However, we have to take the air re-dissolved into the surrounding water as discussed in 142 

the main body. The equilibrium bubble pressure should be: 143 

 𝑃𝑏 =
(1 − 𝛼) ∙ 𝐾𝐴 + 𝛼/𝑅𝑇

(1 − 𝛼 + 𝛼 ∙ 𝐿𝑤 𝐿𝑣⁄ ) ∙ 𝐾𝐴 + 𝛼 ∙ 𝐿𝑏 𝐿𝑣⁄ /𝑅𝑇
∙ 𝑃𝑏

∗ (A2.3b) 

where KA is the Henry’s Law constant for air and RT is the gas constant times Kelvin 144 

temperature. Therefore the final equilibrium in two systems can be given by: 145 

 𝑃0 − λ𝐿𝑤 + 𝑃𝐶 = 𝑃𝑏 (A2.4a) 

 𝑃𝑏𝑎𝑟𝑜 + (
(𝑅𝑑𝑣 − 𝐿𝑤)2

𝑅2
− 1) ⋅ 𝑇𝐶 + 𝑃𝐶 = 𝑃𝑏 (A2.4b) 

, where PC is the capillary pressure computed by Eq. 3a. Here Eq. A2.4a and A2.4b show 146 

the equilibrium of a vessel in Flow Meter system and Cavitron system, respectively.  147 

Both the water pressure and bubble pressure are functions of Lw, hence we can solve 148 



the functions to get the exact value of Lw. Newton iteration (details can be found on 149 

Wikipedia) is used to solve Eq. A2.4a and A2.4b to get the Lw in any given vessel location 150 

in a conductivity apparatus or centrifuge by assuming initial water length Lw,0 = 0 and a 151 

function of 𝑓(𝐿𝑤) = 𝑃𝑤 − 𝑃𝑏 at the beginning and then: 152 

 𝐿𝑤,𝑖 = 𝐿𝑤,𝑖−1 + 𝑓(𝐿𝑤,𝑖−1)/𝑓′(𝐿𝑤,𝑖−1) (A2.5) 

, where Lw,i and Lw,i-1 are the length of water at ith iteration, and Lw can be gained when 153 

𝐿𝑤,𝑖 = 𝐿𝑤,𝑖−1. When pressure gradient λ = 0 and P0 = Pbaro in a conductivity apparatus, Lw 154 

can be calculated by Eq. A2.4b with the value of TC = 0, and this is how the Sperry PLC 155 

is simulated in Table I in the main body. Therefore, with Eq. A2.4 we are able to compute 156 

any pressure equilibrium of a vessel at any vessel that begin at a known slice that is Rdv 157 

far from the rotation axis, and hence to calculate the resistance of a cavitated vessel by 158 

Eq. 5. 159 

 160 

Figure S3. Model of water/air interface equilibrium in a single vessel. The upper panel 161 

shows equilibrium of a vessel in a stem connected to a conductivity apparatus while the 162 

lower panel shows equilibrium of vessel in a stem spun in a centrifuge. Lw and Lv 163 

represent the length of water and vessel, respectively. In the upper panel, P0 is the water 164 

pressure at the upstream end of the vessel, and the pressure difference gradient is  in 165 

kPa·m-1; and the water finally equilibrates with bubble as in Eq. A2.4a. In the lower panel, 166 

the central tension of the stem is TC from angular speed ω, and the distance between the 167 

distal end of the vessel and the axis of rotation is Rdv; and water equilibrates with bubble 168 



as in Eq. A2.4b. 169 

(2) Random vessel distribution and different equilibrium types 170 

Vessels that are located in different places have different water pressure at the air/water 171 

interface and different bubble-length, so they have different final pressure equilibriums. 172 

Vessels are randomly distributed in stem such that any cross-section has the same 173 

possibility of vessel ends, vessel length distribution and vessel diameter. To make it 174 

simple, average vessel length and average vessel diameter were used to build the model 175 

instead of vessel-length distributions and vessel-diameter distributions. 176 

As discussed above, in those vessels off the axis, bubbles are pushed towards the 177 

center because of the centrifugal force; but in those vessels that extend across the axis, 178 

water may enter from both ends and force bubble aggregate in the center as shown in Fig. 179 

S4. Air bubbles cannot exist in the sections of the stem immersed in water filled cuvettes 180 

(region a and e in Fig. S4). In our model the stem is divided into 5 parts: a, b, c, d and e as 181 

shown in Fig. S4; where a & e are immersed in water, c is the central region with length 182 

2Lv, and b & d are the remaining parts. When equilibriums are obtained in a Cavitron 183 

system, different computational algorithms apply based on different regions because of 184 

the vessel distribution. However, situation is simpler when segments are measured in a 185 

conductivity apparatus since bubbles tend to be pushed to the low-pressure ends, and 186 

hence Eq. A2.4a applies to the whole embolized segment. 187 

In the Cavitron system, (1) in regions a and e, no air-seeding embolism can develop; 188 

(2) in regions b and d, equilibrium in normal type vessel can be given by Eq. A2.4b while 189 

end type vessel can be assumed as a normal type vessel with a shorter vessel length; (3) in 190 

region c, vessels can obtain equilibrium from one end just like the vessels in regions b/d, 191 

like vessel C3 in Fig. S4; and can obtain equilibriums from both ends like vessels C1 and 192 

C2 in Fig. S4, and in this case the bubble length in these vessels is same as vessels that are 193 

symmetrically bisected by the rotation axis as vessel C1 in Fig. S4. And the vessels like C1 194 

can be treated as two normal type vessels with length of Lv/2. 195 



 196 

Figure S4 Model of stem divided into 5 regions and three types of cross-section. Five 197 

regions (a, b, c, d and e) are divided by the location and stature of vessels as described in 198 

Appendix 2.2. Three types of vessels (end, normal and center type) are defined based on 199 

the vessel location in any given slice. End type vessels are those that are open to the a/e 200 

boundaries, normal type vessels are those that locate between a/e boundaries and rotation 201 

axis, and center type vessels are those that cross the center.  202 

 203 

(3) Stem model: adding up the resistances 204 

Resistance of stem could be computed as RS=∑Rdx dx, where Rdx is the resistance of a dx-205 

thick cross-section from the stem. To make it easy to understand, we use the average 206 

hydraulic recovery ratio of all the embolized vessels that pass through the slice to 207 

represent the hydraulic recovery ratio in the slice: 𝑘 = ∑ 𝑘𝑖/𝑁, where ki is the hydraulic 208 

recovery ratio of the ith vessel and N is the total number of vessels. So vessels are divided 209 

into three different type: end, normal and center types as described in Fig. S4.  210 

Therefore, when equilibrium is obtained in end type vessels, the embolized vessel 211 

will recover its conductance by a ratio of 𝑘 =
2𝑙𝑤𝑙𝑣

𝑙𝑤
2 +𝑙𝑣

2 (which follows from Eq. 5 in the main 212 

body), and here lv < Lv and lw can be computed by Eq. A2.5. When equilibrium is obtained 213 



in normal type vessel, embolized vessel recover its conductance by a ratio of 𝑘 =
2𝑙𝑤𝑙𝑣

𝑙𝑤
2 +𝑙𝑣

2, 214 

and here lv is the average vessel length Lv and lw is computed by Eq. A2.5. In those center 215 

type vessels where equilibrium can only occur from one end, embolized vessels recover 216 

conductance by the ratio of 𝑘 =
2𝑙𝑤𝑙𝑣

𝑙𝑤
2 +𝑙𝑣

2, here lv is the average vessel length Lv and lw is 217 

computed by Eq. A2.5. And in these center type vessels where equilibrium can occur 218 

from both ends, embolized vessels recover conductance by a ratio of 𝑘 =
2𝑙𝑤𝑙𝑣

𝑙𝑤
2 +𝑙𝑣

2, and here 219 

lv should be Lv/2 and lw should be computed by using Lv/2 as vessel length as described 220 

above. When equilibrium occurs from both ends in the vessels that are a little off the axis 221 

like vessel C2, we can find that the length of bubble should be the same hence the 222 

resistance of the vessel should be the same with that of C1, where the whole-length 223 

vessels behave like two vessels with length of Lv/2 that behave like normal type vessels 224 

that locate in b/d region, therefore the pressure equilibrium of a half-length vessel was 225 

used to represent the final equilibrium in center type vessels where equilibrium 226 

establishes from both ends. 227 

In the slices in b/d, some of the vessels are open to the boundaries of a/e hence 228 

partial length vessels are used to compute hydraulic recovery ratio, together with the full 229 

length vessels to compute the average k. In the slices in c, some of the vessels are open to 230 

the center, hence equilibrium is able to form in two ends in which case can be treated as 231 

vessel C1 in Fig. S4; and those vessels that are off the center and those that cross the 232 

center but with equilibrium only at one end can be treated as normal type vessels and 233 

share the same equation to compute k. And in this way, every embolized vessel that cross 234 

a given slice can be computed and then average k can be derived. 235 

In a partly embolized stem, only  = n/N of the vessels out of a cross-section are 236 

cavitated or embolized (n is the number of cavitated/embolized vessels and N is the total 237 

number of all the vessels), and it was assumed that all vessels are of the same diameter 238 

and length. When water/air interfaces equilibrate with bubbles, the fraction of non-239 

embolized vessels (1-ε) are fully conductive while the fraction of embolized vessels (ε) 240 

recover their conductivity by a ratio of k, and hence the conductivity of the slice is 241 

[(1 − 𝜀) + 𝑘𝜀] ∙ 𝑘ℎ,0, where kh,0 is the conductivity of the slice with no embolism; and the 242 



resistance of the cavitated vessels will drop as calculated from Eq. 5 and the resistance of 243 

the slice will be computed by: 244 

 𝑅𝑑𝑥 =
1

(1 − 𝜀) + 𝑘𝜀
⋅ 𝑅0 (A2.6) 

, where R0 is the resistance of the dx-thick slice when stem is fully conductive. Here 245 

resistance rather than conductance is used because resistance can be added up directly in a 246 

series of slices. 247 

With the description above, the resistance of every dx-thick could be computed to 248 

add up to the overall resistance of the stem by Eq. A2.6. We sacrifice some of the 249 

accuracy of the model output in order to simplify some of the calculations and save 250 

computational time which is currently about 20 minute per curve fitting. Future models 251 

are worth developing with fewer sacrifices. 252 

After all the resistances of dx-thick slices are calculated and added up at a given 253 

tension, the total resistance of the stem is used to obtain the kh of the whole stem under 254 

different tensions by: 255 

 𝑅𝑆 = ∑ 𝑅𝑑𝑥 (A2.7a) 

 𝑘ℎ =
𝑅𝑆,0

𝑅𝑆

𝑘𝑚𝑎𝑥 (A2.7b) 

, where RS,0 is the resistance of the fully conductive stem, and kmax is the maximum 256 

hydraulic conductivity of the stem. 257 

PLC distribution in stems from centrifuges has been studied at slightly above 258 

atmospheric pressure (Cai et al., 2010), but how PLC is distributed in segments spinning 259 

in a rotor remains unknown because the bubble pressure of air in vessels in the 260 

experimental conditions of Cai et al. (2010) is unknown. In this paper the fraction of 261 

embolized vessels (ε) is assumed to be evenly distributed in stem between two reservoirs, 262 

hence we assigned the same  values in sections b, c and d under high tension while a and 263 

e sections remain non-embolized (=0). In the second paper of this series other 264 

distributions are considered and used to check how much the hydraulic recovery curve 265 

could be influenced by different distributions of  in stems spun in centrifuges. 266 

In summary,  the model assumes that (1) vessel length and vessel diameter were the 267 



same in every vessel in the stem, (2) bubble pressure was the same in every cavitated 268 

vessel under high tension, (3) embolized vessel fraction (𝜀 = 𝑛/𝑁) was evenly distributed 269 

in b, c and d parts, and (4) contact angle in vessels was assigned to 45o (π/4), which 270 

ranges from 42° to 55° (Zwieniecki and Holbrook, 2000). Based on these assumptions, 271 

the hydraulic recovery model is accomplished by: (1) calculated the resistance of a dx-272 

thick slice, (2) added up the resistances of the stem, (3) computed hydraulic conductivity 273 

from resistances, and (4) calculate how hydraulic conductivity changes with decreasing 274 

tension. 275 

The model was coded and run in Python(x,y) 2.7.5, the code can be found in the 276 

supplemental python script in Appendix 3. 277 

  278 



Appendix 3: Python code of the Model 279 

Note: The sentences after ‘#’ are code descriptions, which will not run in python compiler. And to make it easy to read, we use a monospace font 280 

“Consolas” and landscape layout. 281 

 282 

# range of central tension from 0.0 to 5.0 MPa 283 

center_tension = [] 284 

tmptension = 0.0 285 

while(tmptension <= 5.0): 286 

    center_tension.append(tmptension) 287 

    tmptension += 0.01 288 

 289 

KCP_O = 1.30E-3 #mol.L-3.atm-1 290 

KCP_N = 6.10E-4 291 

KCP_A = 0.80*KCP_N + 0.2*KCP_O 292 

RT = 298.0 * 0.0821 # atm.L.mol-1 293 

 294 

def find_x(l,ct,bs): 295 

    x = 0 296 

    count = 0 297 

    if (bs ** 2 / 0.127 ** 2 -1) * 1000 * ct + 100 + cp > BP: 298 

        while 1: 299 

            count = count + 1 300 

            if(count >=20): 301 

                x = l 302 

                break 303 

            fr = x / l 304 



            fwt = 1.0 - center_PLC/100.0/10.0 305 

            fbt = center_PLC/100.0/10.0 306 

            fwe = fr*fbt + fwt 307 

            fbe = fbt*(1.0-fr) 308 

            funcKt = KCP_A*fwt + fbt/RT 309 

            funcKe = KCP_A*fwe + fbe/RT 310 

            EquilP = BP * funcKt/funcKe 311 

            # judge here is Pw+Pc-Pb 312 

            judge = ((abs(bs) - x) ** 2 / 0.127 ** 2 -1) * ct * 1000.0 + 100.0 + cp - EquilP 313 

            # slope here is the slope of "judge" at x 314 

            slope = - ct * 1000.0 / 0.127 ** 2 * 2.0 * (abs(bs) -x) + BP*funcKt/(funcKe**2) * (fbt/l*KCP_A - 315 

fbt/RT/l) 316 

            # Newton Iteration 317 

            x = x - judge / slope 318 

            #print judge,slope,x 319 

            if (abs(judge) < 0.0001): 320 

                # To judge when to stop 321 

                break 322 

            # A Statement to avoid overflow 323 

            if x >= l or x < 0: 324 

                x = l/1.2 325 

    return x 326 

# A function to compute the resistance of the embolized vessels at any given slice 327 

def drawf_PLC(ct,vl): 328 

    # Begin the slice array from the distal end of region a by the thickness of 0.001 m 329 

    site = -0.137 330 



    dsite = 0.001 331 

    # Stop after the last slice at 0.137 m 332 

    while(site < 0.138): 333 

        # The resistance of slices in a/e is constant R0, we use R0=1.0 334 

        if(abs(site) > 0.127): 335 

            NEWR.append(1.0) 336 

            OLDR.append(1.0) 337 

        # The resistance of slices of end and normal type 338 

        elif(abs(site) >= vl): 339 

            klist = [] 340 

            ith = 1 341 

            while(ith <= 100): 342 

                tmpml = ith*0.01*vl + 0.127-abs(site) 343 

                if(tmpml > vl): 344 

                    tmpml = vl 345 

                    tmpbs = abs(site) - (vl - ith*0.01*vl) 346 

                    tmpwl = find_x(tmpml,ct,tmpbs) 347 

                    tmpki = 2.0*tmpml*tmpwl / (tmpml**2 + tmpwl**2) 348 

                    klist.append(tmpki) 349 

                else: 350 

                    tmpwl = find_x(tmpml,ct,0.127) 351 

                    tmpki = 2.0*tmpml*tmpwl / (tmpml**2 + tmpwl**2) 352 

                    klist.append(tmpki) 353 

                ith += 1 354 

            kr = numpy.mean(klist) 355 

            NRdx = 100.0 / ((100.0-center_PLC) + kr*center_PLC) 356 



            ORdx = 100.0 / (100.0-center_PLC) 357 

            NEWR.append(NRdx) 358 

            OLDR.append(ORdx) 359 

        # The resistance of slices in region c 360 

        else: 361 

            klist = [] 362 

            ith = 1 363 

            while(ith <= 100): 364 

                tmpml = vl 365 

                tmpbs = max(abs(site)+vl-ith*0.01*vl,abs(abs(site)-ith*0.01*vl)) 366 

                tmpes = min(abs(site)+vl-ith*0.01*vl,abs(abs(site)-ith*0.01*vl)) 367 

                if(abs(tmpbs) < vl): 368 

                    # A judgement use to judge whether the equilibrium establish from both ends 369 

                    ljudge = vl / (2*tmpes) * BP 370 

                    # Patm = 100.0, Tension in MPa 371 

                    rjudge = cp + ((tmpes/0.127)**2 - 1.0)*ct*1000.0 + 100.0 372 

                    if(ljudge >= rjudge): 373 

                        # When the slice is normal type slice 374 

                        tmpwl = find_x(vl,ct,tmpbs) 375 

                        tmpki = 2.0*tmpml*tmpwl / (tmpml**2 + tmpwl**2) 376 

                        klist.append(tmpki) 377 

                    else: 378 

                        # When the slice is center type slice 379 

                        tmpwl = 2.0 * find_x(vl/2.0,ct,vl/2.0) 380 

                        tmpki = 2.0*tmpml*tmpwl / (tmpml**2 + tmpwl**2) 381 

                        klist.append(tmpki) 382 



                else: 383 

                    tmpwl = find_x(vl,ct,tmpbs) 384 

                    tmpki = 2.0*tmpml*tmpwl / (tmpml**2 + tmpwl**2) 385 

                    klist.append(tmpki) 386 

                ith += 1 387 

            kr = numpy.mean(klist) 388 

            NRdx = 100.0 / ((100.0-center_PLC) + kr*center_PLC) 389 

            ORdx = 100.0 / (100.0-center_PLC) 390 

            NEWR.append(NRdx) 391 

            OLDR.append(ORdx) 392 

        site += dsite 393 

 394 

# Main Body of the Code 395 

# cp here is actually capillary pressure 396 

# Here we use lists to store the values of each parameter 397 

cps = [7.0,] 398 

vessel_lengths = [0.04,] 399 

filenames = ["./Test.txt",] 400 

Kmaxs = [1.0E-4,] 401 

cPLCs = [50.0,] 402 

BPs = [50.0,] 403 

# main part 404 

for i in range(len(filenames)): 405 

    # Assign the parameters! 406 

    OLDR = [] 407 

    NEWR = [] 408 



    savefilename = filenames[i] 409 

    kmax = Kmaxs[i] 410 

    center_PLC = cPLCs[i] 411 

    BP = BPs[i] 412 

    cp = cps[i] 413 

    vessel_length = vessel_lengths[i] 414 

    savefile = open(savefilename,"w+") 415 

    savefile.write("Tension\tKh\tPLC\n") 416 

    # Here we give a limit to vessel length to avoid overflow 417 

    if vessel_length < 0.127: 418 

    #cycle through center tensions 419 

        for tension in center_tension: 420 

        # Clear OLDR,NEWR in each cycle 421 

            OLDR = [] 422 

            NEWR = [] 423 

            # Compute the resistance in 275 slices 424 

            drawf_PLC(tension,vessel_length) 425 

            tmpkh = kmax * (274.0 / sum(NEWR)) 426 

            tmplc = 100.0 - 100.0*(274 / sum(NEWR)) 427 

            tmpstr = str(tension) + "\t" + str(tmpkh) + "\t" + str(tmplc) 428 

            print tmpstr 429 

            savefile.write(tmpstr + "\n") 430 

    # Save the output results and close the file 431 

    savefile.close() 432 
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