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MATERIALS AND METHODS 

Database formation 

Studies containing εc or “radiation use efficiency” in important food crops spanning 

major plant groups and C4 biofuel crops were found using Web of Science (ISI, Philadelphia, 

PA, USA; Supplemental Table S1). Articles were mined for information regarding crop 

husbandry, growing location and conditions, and details regarding εc measurements and 

calculations. Values and extra information only available in figures were digitized using Grafula 

3 version 2.10 (Wesik SoftHaus, St Petersburg, Russian Federation).  

Studies were omitted by certain criteria to minimize bias in reported εc. Since non-field 

growth conditions can influence εc (Slattery et al., 2013), experiments not conducted in the field 

free of enclosure or root barriers were excluded. Studies that included belowground biomass in 

their measurements (with the exception of peanut and potato, where biomass included the 

reproductive or vegetative storage structures growing belowground) were also excluded since 

methods of measuring belowground biomass were less reliable and hugely more variable than 

aboveground biomass measurements. εc values based on incident radiation were not included due 

to potential bias caused by changes in interception efficiency (Monteith, 1994). εc values 

obtained in the presence of intercropping, nutrient deficiency, disease, or other imposed stresses 

such as elevated atmospheric gases were removed because these factors significantly alter εc 

(Slattery et al., 2013). If several nutrient treatments were imposed in a study, only the value with 

the optimal nutrient application was kept for each experiment within the study to avoid 

depressions in εc due to nutrient limitations. Since εc is often lower in reproductive stages 

compared to vegetative stages (Sinclair and Muchow, 1999), only values obtained from 

vegetative stages or the entire growing season were retained. Values from the same study were 

only kept if they were considered independent (i.e., growth period, location, cultivar, treatment 

or treatment level differed; Ainsworth et al., 2002). Crops with limited data (n<40) were omitted 

to prevent biased estimates of εc. 

 

Data manipulation and gap filling 



εc values were reported in various combinations of units and were standardized to MJ of 

dry matter per MJ absorbed photosynthetically active radiation (APAR) before analyses. Values 

with mass units were multiplied by the energy content of the crop tissue type (Table I).  If a 

value encompassed both vegetative and reproductive stages, the mean aboveground plant energy 

factor was used, whereas values from solely vegetative stages used the energy based on 

vegetative tissues only (Table I). Radiation values were converted to MJ APAR using the 

conversion factors reported by Gower et al. (1999) and assuming an average leaf area index of 

4.0. Measurements based on intercepted PAR were converted to APAR using a multiplier of 1.04 

whereas values based on intercepted solar radiation were multiplied by 1.96 to convert to APAR 

(Gower et al., 1999). 

Despite removing studies containing clearly stressful conditions, there was substantial 

variation in the recorded weather/climate related conditions that can cause variation in εc 

(Slattery et al., 2013). These conditions were used as independent variables in multiple 

regression analyses and included: mean annual [CO2] for the year(s) the experiments were 

conducted, mean growing season temperature (T), available incident solar radiation during the 

growing season (St), and the amount of precipitation (rain and irrigation) available during the 

growing season (H2O). Mean annual [CO2] data were obtained from Dr. Pieter Tans, 

NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/) and Dr. Ralph Keeling, Scripps Institution 

of Oceanography (scrippsco2.ucsd.edu/). Whenever possible, missing T and H2O data were 

obtained from NOAA (www7.ncdc.noaa.gov/CDO/cdo) from the experiment site corresponding 

to the growing season dates. Missing St was found using the National Solar Radiation Database 

(http://rredc.nrel.gov/solar/old_data/nsrdb/) or the interannual variability data available through 

NASA SSE (https://eosweb.larc.nasa.gov/cgi-bin/sse/sse.cgi). A genetic component was also 

included in the analyses and was represented by the year of release (YOR) for each variety for 

which εc was calculated. Varieties included in the analyses were listed by crop and subgroup 

(Supplemental Table S2). If an actual YOR was not reported in the literature or the Germplasm 

Resources Information Network (GRIN) database (National Genetic Resources Program, 

USDA/ARS), it was stated as the earliest mention in the literature using searches in both Web of 

Science (ISI, Philadelphia, PA, USA) and Google Scholar. Plant density was also included for 

maize analyses, both with and without YOR, since significant increases in yield have been 

correlated with increasing stand density (Duvick, 2005). Groups were assigned within rice and 



wheat to further investigate means within crops (Table I). The ranges of each independent 

variable within each crop species and subgroup for the corresponding analyses were listed 

(Supplemental Table S3). 

 

Analyses 

All statistical analyses were conducted using Statistical Analysis Software (SAS, ver. 9.3, 

SAS Institute, Cary, NC, USA). εc means were calculated using an ANOVA (Proc GLM), and 

differences were considered significant at p<0.1. Prior to conducting multiple regression 

analyses, general relationships between individual independent variables and εc were determined 

in major crop species. Proc REG was used to determine if relationships were linear or quadratic 

using the lowest Akaike information criterion (AIC), and to eliminate influential points, the 

Cook’s d metric was used. Next, Proc CORR was used to test for correlation between the 

independent variables where relationships greater than 0.8 were considered severe. Variance 

inflation factors were also determined (Proc REG) with the criterion that values greater than 10 

also indicated severe correlation. Although significant correlation based on the metrics stated 

above was not present among any of the independent variables within each crop dataset, partial 

correlation coefficients were also determined (Proc CORR) for later comparison with multiple 

regression results (Supplemental Table S4). Multiple regression analyses were conducted on εc 

versus the independent variables of breeding (YOR) and environmental factors ([CO2], St, T, and 

H2O; Proc REG) to determine which factors best explained the variation in εc. The lowest 

corrected AIC (AICc) score, which adjusted for sample size and was determined from AIC 

values, was used to identify the best model and rank the individual variables included in the final 

model. Sample size was drastically reduced in many of the crops when H2O was included in the 

model since limited studies reported irrigation amounts. Results were therefore reported for 

analyses without H2O unless sample size was reduced by less than 10% with H2O in the model. 

This eliminated the only quadratic relationship (rice εc versus H2O) from the analyses, resulting 

in only linear relationships between εc and the independent variables. The food crops with 

positive YOR regression coefficients from multiple regression analyses were used to estimate the 

current εc in 2014, then project the approximate amount of time needed for each crop or 

subgroup εc to double and to reach the respective theoretical maxima for C4 and C3 plants. This 

was assuming no changes in climate, breeding intensity, or other factors.  
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Supplementary Table 2. 
Varieties included in crop and subgroup analyses.   

 

Maize 

Adler 30X 

B73 x Mo17 

Barker 

Beck 65X 

Beiyu288 

Buck Aurora 

Buck Austral 

Cambel 78 

Cargill PAG SX123 

Challenger 

CM 109 

DEA 

Dekalb 2F11 

Dekalb 3F23 

Dekalb 3F24 

Dekalb 3S41 

Dekalb 4F91 

Dekalb 4S80 

Dekalb 524 

Dekalb 61-69 

Dekalb 636 

Dekalb DK615 

Dekalb DK688 

Dekalb DK752 

Dekalb DK246 

Dekalb DK529 

Dekalb Exp164 

Dekalb XL72AA 

Dekalb XL82 

Deltapine G4673B 

DK-5219 

Dow 2A120 

Dow 2B710 

Dow 2M545 

Eva 

F2 

F244 

F244 x F2 

F257 

F257 x F244 

F286  

Funk G-4083 

Hycorn 42 

Hycorn 53 

Hycorn 83 

Hyland HL2803 

INRA 150 

Juanita 

King 1131 

KW 1074 

KWS Domingo 

KWS Impacto 

KWS Romario 

KWS Tandem 

LG11 

LP 

LP x F2 

LP x F257 

McCurdy 67-14 

Mo17 

Nidera Ax 599 

Nidera Ax 840 

Nidera XPA 73811 

NK PX9353 

NK PX9405 

Penjalinan 

Pioneer 3245 

Pioneer 335 

Pioneer 33A14 

Pioneer 33P67 

Pioneer 3790 

Pioneer 3803 

Pioneer 3901 

Pioneer 3995 

Pioneer Brand 35Y67 

Pioneer P3540 

Pioneer P37P73 

Poza Rica 7822 

S5154 

SNK 2147 

SPS 240 

Tuxpeño Sequía 

Volga 

Wis. Hybrid 110 

Xianyu335 

Z15 

Z7 

Zhengdan 958 

 

Sorghum 

Grain 

87151-3-4/QL36 

Argence 

ATx378/RTx430 

ATx631/RTx2817 

Cargill 4462 

Cargill 6670 

CSH-6 

CSH-8 

Dekalb DK55 

DK46 

Hybrid Ramada 

IS 27111 

IS 27150 

Liang Tang Ai 

PI 584085 

QL39/QL12 

Triumph Two 64 Y-G 

TX 2862 

TX 399 

TX 7000 

TX 7078 

Tx378 x Tx430 Hybrid 

 

Energy 

Biomass 133 

Keller 

SF BMR Revolution

 

Rice 

New Hybrids 

IR65564-44-2-2 

IR68586-FA-CA-143 

IRUBN030055-5-112 

IRUBN030055-5-190 

IRUBN030055-5-87 

IRUBN030056-10-

107 

IRUBN030056-10-42 

IRUBN030062-1-9 

IRUBN030063-9-4 

IRUBN030070-9-32 

Liangyou 293 

Liangyoupeijiu 

WAB450-I-B-P-38-

HB 

 

Indica 

Huanghuazhan 

Il-you 838 

IR72 

Shanguichao 

Shanyou 63 

Surin 1 

Takanari 

Yangdao 6 

 

Japonica 

Akihikari 

Cocodrie  

Cypress 

HD297 

HD502 

IR43 

IRAT109 

JD305 

Jefferson 

Koshihikari 

Labelle 

Lemont 

Nipponbare 

Shinhakaburi 

Takenari 

 

Basmati 

Basmati-2000 

Super Basmati 

 

 

 



Wheat 

Spring 

Americano 26n 

Attila 

Axona 

Bacanora 

Bencubbin 

Borlaug 

Buck Manantial 

Buck Nandu 

Buck Pucara 

Condor 

Ente 

Eureka FCS 

Fielder 

Gamenya 

Granero INTA 

Highbury 

HY320 

Invento-BAER 

Kanred 

Klein Favorito 

Kulin 

Leader 

Manu 

Maringa 

Mexicali 

Minaret 

Neepawa 

Oasis 

Oslo 

Owens 

Pampa INTA 

Pandora-INIA 

PROINTA Federal 

PROINTA Imperial 

PROINTA Oasis 

PROINTA Pigue 

PROINTA Puntal 

R143 

Sanukinoyume 2000 

Saracen 

Sonalika 

Tammi 

Trigomax 200 

Vinjett 

Weebil 

Yecora 70 

Yitpi 

Zhong 

 

Winter 

Anza 

Aragon 03 

Armada 

Avalon 

Brigadier 

Centurk 

Cockpit 

Estrella 

Florida 

Galahad 

Haven 

HD 2285 

Hedgehog 

Hereward 

HP 1633 

Huntsman 

Hussar 

HUW 234 

ID-2151 

ID-2193 

Isengrain 

Kaskaskia 

Kenong 9204 

KN199 

Maris Huntsman 

Maris Widgeon 

Marius 

Mercia 

Newton 

Norman 

Pane 247 

Pepital 

Rialto 

Riband 

Score 

Siete Cerros 

Soissons 

Stetson 

Virtue

Barley 

Baronesse 

Corvette 

Gilbert 

Grimmett 

Inari 

Kunnari 

Olli 

Pearl 

Rolf 

Scarlett 

Steptoe 

Theresa 

Triumph 

Uurainen 

 

Potato 

Agria 

Alpha 

Bintje 

C14-343 

Cara 

Cosima 

Darwina 

Desiree 

Diamant 

DTO-2 

Elles 

Escort 

Huinkul 

Ilam Hardy 

Jaerla 

Junior 

Katahdin 

LT-1 

Mailen 

Maris Piper 

Mentor 

Pentland Crown 

Premiere 

Producent 

Record Pentland Crown 

Spunta 

 

Peanut 

ASEM 485 INTA 

Chibahandachi 

Chico 

Early Bunch 

Flavor Runner 458 

Florman INTA 

Florunner 

Georgia Green 

ICGV86031 

ICGV86635 

ICGV86707 

Kadiri 3/Robut 33-1 

Manfredi 393 INTA 

Mani Pintar 

McCubbin 

OAC Garroy 

OAC Ruby 

OAC Tango 

Q18801 

Tamrun 96 

Tifton-8 

TMV2 

TMV2NLM 

VA910212 

Virginia Bunch

 

 



Soybean 

93705-34 

93705-36 

A3901RR 

Adams 

Adelphia 

AK (Harrow) 

Apollo 

Asgrow 3127 

Asgrow A5959 

Benning 

Boggs 

Brand 92M70 

BRS Tracajá 

Buchanan 

Calland 

Century 

Clark 

CNS 

Coker 156 

Coker 368 

Darby 

Davis 

Durack 

Enrei 

Essex 

Ford 

Graham 

H2L16 

Hawkeye 

Hsus-H116 

Hutcheson 

IA 3010 

IA 3023 

Illini 

INA 

Jackson 

Ks4895 

L17 

Lee 

Lincoln 

Mandell 

Manokin 

NC-Roy 

NE3399 

NTCPR94-5157 

Omaha 

PB-1 

PI 416937 

PI 471938 

Pioneer 93B15  

Rend 

Resnik 

Roanoke 

Ross 

SCE 82-222 

Shelby 

Spry 

Stress Land 

Wayne 

Williams 

Williams 82 

Woodworth 

Yudou 22 

Zane 

 

Chick Pea 

Amethyst 

Amit 

Annigeri 

B-90 

Borwen 

CDC ChiChi 

CDC Xena 

CDC Yuma 

Dwelley 

Evans 

ICC-4958 

ILC-202 

ILC-482 

ILC-72 

Sanford 

Sultano

Pigeon Pea 

Chaguaramas Pearl 

ICP 15027 

ICP 7179 

ICPL 1-6 

ICPL 83015 

ICPL 8357 

ICPL 84023 

ICPL 85010 

ICPL 85037 

ICPL 87 

ICPL 87091 

ICPL 87119 

ICPL 88026 

ICPL 88032 

ICPL 88039 

ICPL 89002 

ICRISAT-1 

No. 418 

Royes 

UPAS 120 

UW26 

UW17

 

Switchgrass 

Alamo 

Blackwell 

Cave-in-Rock 

Pathfinder 

Kanlow 

Shawnee 

Sunburst 

 

Sugarcane 

Co775 

H73-6110 

H78-7234 

L7130 

L79-1002 

M438/59 

NCo376 

Q117 

Q138 

Q96 

SL7103 

SL8306 

SL8613 

SL88116 

SLI121

 

  



Supplementary Table 3. Independent variable means (top number) and ranges (bottom 

numbers) from εc regression analyses in six major food crops and εc mean analyses in crop 

subgroups. Dashes represent unavailable data. 

a Independent variables included year of release (YOR), mean annual CO2 concentration ([CO2]) 

during the measurement period, mean growing season temperature (T), and available solar 

radiation during the growing season (St). Water available as precipitation and irrigation (H2O) 

was included when sample size changed by less than 10% after including it in the analyses. 

Density was only analyzed in maize. 

 

  

  Independent Variablea 

Species Sub-

group 

YOR 

(year) 

[CO2] 

(µmol 

mol-1) 

T 

(ºC) 

St 

(MJ m-2) 

H2O 

(mm) 

Density 

(plants 

m-2) 

Maize  1987 

1959-2008 

358 

340-387 

20.3 

12.3-30.3 

2871 

1994-3855 

407 

28-835 

8.13 

2.2-12.2 

Sorghum  1985 

1961-2011 

363 

335-390 

24.0 

19.2-30.3 

2581 

2052-3120 

314 

178-1130 

-- 

Rice  1993 

1966-2010 

376 

346-390 

24.8 

18.2-28.4 

2186 

985-3451 

819 

227-1500 

-- 

 New 

hybrids 

2000 

1984-2010 

383 

373-390 

25.8 

23.1-28.4 

1619 

985-2280 

-- -- 

 indica 1994 

1976-2010 

383 

373-390 

25.2 

22.8-28.4 

1738 

1531-2010 

1150 

800-1500 

-- 

 japonica 1987 

1966-2001 

370 

346-386 

23.5 

18.2-25.2 

2345 

1017-3451 

1006 

543-1500 

-- 

 Basmati 1998 

1996-2000 

377 

377 

26.9 

25.4-28.4 

3026 

2958-3102 

352 

227-520 

-- 

Wheat  1984 

1912-2010 

366 

339-390 

12.3 

2.22-21.2 

2006 

1140-3026 

359 

180-748 

-- 

 Spring 1977 

1912-2010 

360 

339-390 

13.9 

8.58-21.2 

2094 

1188-3026 

441 

180-681 

-- 

 Winter 1987 

1922-2009 

371 

339-390 

11.1 

2.22-22.5 

1903 

1140-3051 

325 

146-748 

-- 

Peanut  1982 

1951-2002 

357 

343-380 

19.8 

5.80-27.7 

2547 

1500-3971 

530 

360-791 

-- 

Soybean  1986 

1927-2009 

380 

318-396 

24.4 

18.1-28.8 

2558 

1818-3024 

379 

191-1013 

-- 



Supplementary Table 4. Partial correlation coefficients (top number) and significance level 

(bottom number) of independent variables when linearly regressed upon εc in six major food 

crops. Dashes represent inapplicable or unavailable data. 

a Independent variables included year of release (YOR), mean annual CO2 concentration ([CO2]) 

during the measurement period, mean growing season temperature (T), and available solar 

radiation during the growing season (St). Water available as precipitation and irrigation (H2O) 

was included when sample size changed by less than 10% after including it in the analyses. 

Density was only analyzed in maize. 
 

 Independent Variablea 

 YOR [CO2] St T H2O Density 

       

Peanut 0.278 0.0669 -0.220 0.442 -- -- 

(n=51) 0.056 0.65 0.13 0.0016 -- -- 

       

Soybean 0.161 0.290 -0.538 -0.496 0.0649 -- 

(n=117) 0.088 0.0018 <.0001 <.0001 0.49 -- 

       

Rice 0.101 -0.0154 -0.806 -0.316 -- -- 

(n=102) 0.32 0.88 <.0001 0.0015 -- -- 

       

Wheat 0.170 -0.0423 -0.128 -0.237 -- -- 

(n=159) 0.034 0.60 0.11 0.0029 -- -- 

       

Sorghum 0.173 0.266 -0.485 0.268 -- -- 

(n=23) 0.47 0.26 0.030 0.25 -- -- 

       

Maize 0.204 -0.0775 0.105 0.0372 -- -0.0439 

(n=149) 0.014 0.35 0.21 0.66 -- 0.60 

       


