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Theory 

 

S.1. Rotation-angle dependent effective material parameters of the rotating elliptical blade 

region obtained via Full-wave simulation. The time-varying medium in our system is 

anisotropic and thus tensors should be used in perturbation theory. xx realB   （ xx real  ）and 

xx imagB   ( xx imag  ) correspond to real and imaginary part of effective modulus (effective density) 

tensor element responsible for the collinear scattering process along x-axis studied in this work. 

airB  and air  are the modulus and density of air respectively.  

 

Measuring the effective parameters of the time-varying medium is significant in interpreting our 

results. After a more in-depth consideration of this kind of measurement, we discovered several 

technical difficulties, which prevent us from obtaining the experiment proof.  

1) The acoustic field of the effective region might be inhomogeneous, and thus just directly 

measuring field at several locations in the effective region cannot reflect the whole 

scenario.  



2) With the limits of present measurement techniques available, it is nearly impossible to 

directly measure the whole sound field of the time-varying region as a function of time. 

Neither laser interferometer nor laser Doppler can directly measure the dynamic 

parameters of this optical reflection-less air medium. Schlieren device has little use here 

because the acoustic field in our experiment is too weak to be measured. Because the 

phase distribution is not a stable one, detector array also cannot work in such a dynamical 

time-varying case for imaging the acoustic field.  

3) Transient transmission and reflection method for deducing parameters has its own 

problem here. In experiment, recording time of signal is finite. Take a sinusoidal signal 

with a length of T  as an example (Eq. (1)), which resembles the case in our 

experiment. 
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The amplitude of wave is obtained by Fourier Transform. The frequency component of 

signal, however, is no longer a single frequency. The frequency spectrum will have a 

certain bandwidth of  .   should satisfy the equation: 

 2T    , (2) 

which can also be expressed as  

 1f T   . (3) 

If the recording time of signal is too short (to deduce the time-varying parameters, time 

axis of transient signals should be cut to the small enough parts to match the modulation 

frequency), we could not get the exact amplitude and phase of pressure in the effective 

rotation region, which means it is impossible to use this method deducing the effective 

time-varying parameters.  

 

Taking all the above factors into consideration, we resort to the quasi-static measurement for the 

effective parameters as shown in Fig.S.3. Since air turbulence in the waveguide caused by the 

elliptic shape of the blade is minimal, slowly varying approximation with quasi-static effective 

parameters can still be used in our analysis. Our transmission experimental results in fact well 

support our theoretical findings.  

 

Since the reviewer still has concerns about our quasi-static method, we feel it is necessary for us to 

elaborate it in more details and hope this will clarify some of the issues that the reviewer may have 

in his/her mind. The effective parameters [Phys. Rev. B. 76, 144302 (2007)] of the time-varying 

region in our work, such as density and acoustic velocity, are deduced from acoustic transmission 
and reflection fields by utilizing the continuity equation. In theory, as p Z v g  where p is 

sound pressure, Z is acoustic impedance of medium and v is vibration velocity, both sound 

pressure and vibration velocity can be used to deduce effective parameters. Nevertheless, the 

vibration velocity of a medium, e.g., air, subjected to an acoustic field is too difficult to be 

measured directly. Laser interferometer or laser Doppler vibration meter may be used if there is 



measurable optical reflection, which is not the case here for air. An alternative way used by many 

scientists is to measure sound pressure directly with microphones for fluid media like air. Once the 

phase and amplitude of the pressure fields before and after the time-varying medium (shown in 

Fig.S.2) are known. The effective parameters of the time-varying medium can be derived. Detailed 

steps are discussed as follows. 

 

 

S.2. Schematic of a waveguide section with three regions. Medium in region 1 and region 3 is 

air while region 2 contains the time-varying medium. Here, the length D of the effective medium 

region is 0.02m in both simulation and experiment. The blade is placed in the center of this region. 

 

A three-region waveguide structure under study is shown in Fig.S.2. Medium in region 1 and 

region 3 is static air while region 2 contains the time-varying medium. We will adopt the 

continuity equation to deduce the effective mass density of this time-varying medium.  

 

Step One: We need to figure out the expressions for the pressure and velocity in every region.  

Expressions of region 1: 

In region 1, sound pressure of incident acoustic waves ( ip ) and air’s vibration velocity of incident 

acoustic waves ( iv ) can be written as: 
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In region 1, sound pressure of reflected acoustic waves ( 1rp ) and air’s vibration velocity of 

reflected acoustic waves ( 1rv ) can be written as: 
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Expressions of region 2: 

In region 2, sound pressure of transmission acoustic waves ( 2tp ) and air’s vibration velocity of 

transmission acoustic waves ( 2tv ) can be written as: 
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In region 2, sound pressure of reflected acoustic waves ( 2tp ) and air’s vibration velocity of 

reflected acoustic waves ( 2tv ) can be written as: 
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Expressions of region 3: 

In region 3, sound pressure of transmission acoustic waves ( tp ) and air’s vibration velocity of 

transmission acoustic waves ( tv ) can be written as: 
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Step Two: By applying boundary conditions at boundary 0x  , we get the following two 

equations, 
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Similarly at the boundary x D , we get  
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Acoustic pressure, acoustic impedance of medium and vibration velocity of medium are related 

according to, 
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where 1 1 1Z c  is the acoustic impedance of medium in region 1; 
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where 2 2 2Z c  is the acoustic impedance of medium in region 2; 

  1ta tav p Z , (13) 

where 1 1 1Z c  is the acoustic impedance of medium in region 3; 



By substituting Eq. (11), (12) and (13) into Eq. (9) and Eq. (10), we get: 
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By substituting Eq. (14) into Eq. (15) and eliminating 2tap and 2rap , we get the following 

equations 
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By solving Eq. (16), we can express 2Z  in terms of 1 1, , ,ia ra taZ p p p  as follows 

  

1
2 2 2

1
2 12 2

1

( )

( )
ia ra ta

ia ra ta

p p p
Z Z

p p p

  
    

. (17) 

Step Three: By substituting Eq. (17) into Eq. (16) and eliminating 2Z , we will obtain the detailed 

description of 2k . Thus, we calculate the effective parameters 2  and 2B  by substituting the 

results of 2k  and Eq. (17) into the equations as follows, 
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where   is the angular frequency of incident waves. 

 

It is easy to extract the pressures of incident, transmitted and reflected pressure fields to retrieve 

the effective parameters in simulation (see Fig. S.1). However, it is a little complicated to measure 

directly the exact values of incident and reflected pressures in experiment, because incident waves 

and reflected waves are always mixed up together ( 1 1i rp p p  ). In this case, Eq. (17) can be 

changed to: 
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Where 1ra

ia

pr p and ta

ia

pt p . 

The reflected coefficient (r) and transmission coefficient (t) have to be measured with the 

Transfer-function Method [ISO,10534-2-1998:Acoustics Determination of Sound Absorption 

Coefficient and Impedance in Impedance Tubes. Part 2: Transfer-function Method (ISO, Geneva, 

Switzerland, 1998)]. 

 

By repeating the same procedure at the blade’s different rotation angle, we can deduce the 

angle-dependent effective parameters as shown in Fig. S.3. Despite the absolute value for 

measured and simulated effective modulus and density are slightly different due to the loss in the 

experiments, harmonically varying effective parameters as a function of the rotation angle is 

clearly seen in both experiment and simulation. 

 

 

S.3. Experimentally deduced effective parameters. The time-varying medium in our system is 

anisotropic and thus tensors should be used in perturbation theory. xx realB   （ xx real  ）and 

xx imagB   ( xx imag  ) correspond to real and imaginary part of effective modulus (effective density) 

tensor element responsible for the collinear scattering process along x-axis studied in this work. 

airB  and air  are the modulus and density of air respectively. 

 

To conclude, the deduced effective parameters for the time-varying medium are consistent with 

the simulation to great extent, and their periodic change in time as a result of rotation is 

responsible for the phenomenon of dynamic modulation or dynamic scattering observed in our 

work. We would love to measure the effective parameters directly. The current available 

technology, however, prevents us from doing that. In contrast, the quasi-static model we adopted 

in this work works well, and the simulation results obtained from such model matches with the 

experimental transmission spectrum to large extent.  

 



In the presence of rotation, the linear acoustic equations can be written as  
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Here equations (20), (21) and (22) represent equation of mass conservation, equation of 

momentum conservation and thermodynamic equation of state, respectively.  is the time 

dependent density of the medium and 0c is the speed of sound, which can be treated as an 

invariant. v


is the velocity field perturbation of the acoustic wave and p is the acoustic pressure.  

From Eqs. (20-22) we get 
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1( )t are tensors.. 

By substituting Eq. (22) into Eqs. (20) and (21), and replacing velocity field v


 by velocity 

potential v 


, the equations can be described as 

   0 1H H t      (24) 

where   is the eigenfrequency, and 0H and  1H t  can be expressed as 
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where *  is the cofactor of  . 

Considering that effective mass density is dependent on the rotation angle with the approximate 

cosine profile, so 1( )H t can be expressed as: 
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In the above analysis, we have set  0 1 t    , here 0 and 1( )t are tensors. 

In the absence of rotation,  1 0H t   and the eigen equation can be written as 



 0 n n nH   
.
 (30) 

We can get n  easily by solving the corresponding Helmholtz equation.  

In the presence of rotation, considering the two-folded symmetry of elliptical blades, the effective 

Hamiltonian  1H t  can be written as  1 cos 2 rH V t , where r  is the rotation angular 

frequency of the elliptical blade. The new eigenvectors can be written as a linear superposition of 

n
:
 

   0 cos 2 rH V t      (31) 
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The coefficient na  must satisfy 
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When single frequency acoustic wave enters the system, the initial condition satisfies 

  00n na  . Based on time-dependent perturbation theory and Fermi golden rule, transition rate 
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The above equation means that the initial system energy level will be split to create two additional 

sub energy levels, of which the angular frequency are determined according to the following 

expression, 

 0 2 r     .
 

(35) 

 

Details for Experiments 

As shown in Figure.S.4, the acoustic waveguide is made of aluminum alloy. Its length is 1.5m  

and its rectangular cross-section has an outside dimension 25 100mm mm . The thickness of 

the wall is1.25mm . The waveguide is filled with air at room temperature. The normal frequency 



of this waveguide can be calculated by 
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, where 22.5xl mm and 

97.5yl mm  are the inner width and height of the acoustic waveguide. The single-mode cut-off 

frequency of this waveguide can then be determined to be  1,0 7622f Hz . Therefore as long as 

the input frequency  1,0f f , the waveguide can support single mode operation. The meta-atom 

is an elliptical blade made of nylon with a density of 1150kg/m3 and an acoustic velocity of 

2600m/s, which is attached to the rotation axis of a DC motor. A modulator controls the rotation 

frequency of the motor with a frequency resolution of 1Hz. The distance between the meta-atom 

(blade) and the Helmholtz resonator array (measured from blade’s rotation axis to the central axis 

of the nearest resonator) is 450mm. The Helmholtz resonator array has a pitch about 50 mm. Each 

individual Helmholtz resonator is made of ABS plastics with a density of 1050kg/m3 and an 

acoustic velocity of 2450m/s via 3D printing. The end of the acoustic waveguide was sealed with 

a 145-mm-thick sponge. Its total absorption along with several other tested seal configurations is 

shown in Fig. S.4. A probe (B&K-4939-2670 microphone) is placed inside the waveguide via a 

drilled hole on the waveguide’s ceiling for acoustic signal acquisition. Collected signal data are 

processed by B&K-3560-C signal analyzer. 

 

 

S.4. Geometric parameters of the unidirectional system. 

1 90 ; 22.5 ; 97.5 ; 50 ; 10 ; 5 ; 10x yh mm l mm l mm m mm R mm r mm t mm       . 



 

S.5. Acoustic absorption coefficient for various termination conditions. Since 145-mm-thick 

sponge has the best absorption performance among these four termination conditions, it was used 

exclusively in our experimental investigation to seal the waveguide. 

 

 

S.6. Experimental results for acoustic transmission and energy conversion ratio through the 

elliptical blade as a function of loudspeaker input voltage. 0I  is the input energy of the input 

acoustic wave and nI  are the sum of the output energy of all the high order scattering 

components generated via time-varying acoustic scattering. Energy conversion ratio here is 

defines as 0/nI I . From the data shown in this figure, the time-varying acoustic scattering we 



have mentioned is a kind of linear effects. 

 

 

S.7. Contrast ratio for three different rotation frequencies 15 ,40 ,65rf Hz Hz Hz . Here 

the contrast ratio is defined as
forward backward

c
forward backward

I I
R

I I





, where Iforward and Ibackward are the 

integrated output energy for two forward and backward propagation directions. 

 

 

S.8. Normalized transmission curves for the band-stop filters considering air loss via full 

wave simulations. Air loss can not be ignored in experiments. We defined the mass density in 

resonance cavity as 31.25 /kg m , 3(1.25 0.3 ) /i kg m , 3(1.25 0.45 ) /i kg m and 3(1.25 0.6 ) /i kg m , 

respectively. The results can give an explanation for the differences in filters’ performance 

between simulations and experiments. 

 



 

S.9. Normalized transmission for the case, where the blade is placed in the acoustic 

waveguide but is at rest with 0rf  . As the absorption coefficient at the end of the acoustic 

waveguide is not 100 percents, transmission spectra from two directions (forward and backward) 

are not the same in the case the meta-atom is placed in the waveguide but is at rest with 0rf  . 

In this case, we can calculate correction factors as a function of frequency by doing division to 

adjust results to ideal conditions. When the blade is driven by the motor, the transmission spectra 

need to be normalized by the correction factor function got from the case when 0rf  . 

 


