

Figure. S1. The histology of visceral yolk sac (VYS) and detection of marker expression in cystic embryoid bodies (EBs) by in situ hybridization, RT-PCR and RT-qPCR. (A) Histological section of E12.5 VYS stained with Haematoxylin & Eosin showing a double layer organization with a columnar epithelium outer endoderm layer and inner mesoderm layer (scale bar left: 200μ m, right: 20μ m). No signal for an Afp sense probe (B) or a Ttr sense probe (C) was detected in cystic EBs by whole mount in situ hybridization (negative controls for Fig. 1G). Lefty1 (D) and Pyy (E) expression was detected in cystic EBs by whole mount in situ hybridization using antisense probes (right panels), whereas no signal was detected using sense probes (left panels). Scale bar for whole mount in situ hybridisations: 1mm. (F) EBs differentiated for 5 days with the cystic EB protocol showed expression of *Afp*, *Ttr*, and *Slc22a3* but not the specific yolk sac endoderm marker *Slc22a2* by RT-PCR, whereas E12.5 VYS showed expression of all markers. Primers for RT-PCR are given in Table S4. (G) Relative expression of the pluripotency markers *Oct4* and *Rex1* during cystic EB differentiation detected by RT-qPCR. (H) Relative expression of the *de novo* DNA methyltransferases *Dnmt3b* and *Dnmt3l* during cystic EB differentiation detected by RT-qPCR.. The cystic EB differentiation series assayed in G and H was differentiated from A9 p17 ES cells and expression levels were normalised to cyclophillin A. Error bars indicate the standard deviation of 3 technical replicates. Primers for RT-qPCR are detailed in Santoro et al 2013 Development 140, 1184-1195.

Figure S3. Cystic embryoid bodies (EBs) show epigenetic features more similar to fetal liver than yolk sac endoderm (ysE). (A) Hierarchical clustering of E12.5 ysE, cystic EBs and E12.5 liver by the methylation of all repeats (filtered as described in supplementary methods resulting in 1970 measurements). (B) Hierarchical clustering of E12.5 ysE, cystic EBs and E12.5 liver by the methylation of CpG islands (filtered as described in supplementary methods resulting in 972 measurements). (C) Hierarchical clustering of E12.5 ysE, cystic EBs and E12.5 liver by the methylation of promoters defined as 5kb regions centered around the transcriptional start site of RefSeq transcripts (filtered as described in supplementary methods resulting in 2568 measurements). (D) Boxplots indicating the methylation levels of CpG islands and the non-CpG island parts of the genome (analyzed in non-overlapping 5kb windows) in two replicates of E12.5 ysE, cystic EBs and E12.5 liver. (E) Boxplots indicating the methylation levels of genic structures (promoters, coding exons, introns and 5'+ 3' UTRs) in two replicates of E12.5 ysE, cystic EBs and E12.5 liver. (F) Boxplots indicating methylation levels of all repeats in two replicates of E12.5 ysE, cystic EBs and E12.5 liver. (G) Boxplot illustrating the methylation levels of SINE, LTR, Satellite and DNA repeat families in two replicates of E12.5 ysE, cystic EBs and E12.5 liver. (H-J) Kernel density plots showing the probability of repeats showing a fold difference expression in the two compared tissues (x-axis: log2 fold difference between two tissues, y-axis: probability density). (H) IAPEz repeats are highly expressed in E12.5 ysE compared to E12.5 liver, whereas other repeat classes show no significant difference in expression. (I) No repeat classes showed a significant difference in expression between E12.5 liver and cystic EBs. (J) No repeat classes showed a significant difference in expression between cystic EBs and E9.25 VYS mesoderm.

Kulinski et al.,

Figure S4. Differential gene expression analysis shows different stages of cystic embryoid body (EB) differentiation are similar whereas yolk sac endoderm and liver show many differences. (A) Cystic EBs differentiated for 10 days (d10, n=2) and 15 days (d15, n=2) show a strong correlation (r^2 =0.98) in density representation scatter plots of mean RPKM values from RNA-seq. (B) In contrast, cystic EBs differentiated for 10 or 15 days (n=4) are less correlated with fetal liver (n=6) in density representation scatter plots of mean RPKM values from RNA-seq. (C) An MA plot (log_2 fold change versus log_{10} mean expression) of differentially expressed transcripts identified between cystic EBs d10 and d15 shows no significant differences with a FDR cut-off of <0.05. A negative change represents the transcripts expressed higher in cystic EBs d15 and a positive change represents transcripts expressed higher in cystic EB d15. (D) A principal component analysis scatterplot shows that samples cluster according to tissue type with a minor batch affect according to RNA-seq technique. Data points are colour-coded according to the tissues type and shaded according to the sequencing technique. (E) An MA plot of differentially expressed transcripts identified in E12.5 ysE and liver. Genes showing a significant difference are coloured red (FDR <0.01). A negative change represents the transcripts expressed higher in cystic EBs and a positive change represents the transcripts expressed higher in cystic EBs and a positive change represents the transcripts expressed higher in cystic EBs and a positive change represents the transcripts expressed higher in cystic EBs and a positive change represents the transcripts expressed higher in cystic EBs and a positive change represents the transcripts expressed higher in cystic EBs and a positive change represents transcripts expressed higher in cystic EBs and a positive change represents the transcripts expressed higher in cystic EBs and a positive change represents transcripts express

Kulinski et al.,

Figure S5. Transcriptome analysis of yolk sac endoderm (ysE) cystic embryoid bodies (EBs) and fetal liver. (A) An MA plot (\log_2 fold change versus \log_{10} mean expression) of differentially expressed transcripts identified between E12.5 ysE and cystic EBs. A negative change represents the transcripts expressed higher in cystic EBs and a positive change represents the transcripts expressed higher in cystic EBs and a positive change represents the transcripts expressed higher in cystic EBs. A negative change represents the transcripts expressed higher in cystic EBs and a positive change represents the transcripts expressed higher in cystic EBs. A negative change represents the transcripts expression) of differentially used exons identified between yolk sac endoderm and cystic EBs. A negative change indicates the exons used more in E12.5 ysE and a positive change represents the exons used more in cystic EBs. Exons showing a significant difference are coloured red (FDR <0.01). (C) Statistics of de novo gene locus annotations highlighting the putative novel genes identified in the sequenced tissues. (D) H3K4me3 enrichment validates de novo annotation of the ysE transcriptome. Heat map of H3K4me3 enrichment from E12.5 VYS ChIP-seq in a 5kb window centred over the predicted TSS from the de novo annotation from E12.5 ysE. (E) A Venn diagram illustrating the approach used in Fig. 5B to identify differentially expressed genes that distinguish ysE and cystic EBs (not to scale). Highlighted in black are the 156 genes expressed significantly higher in both E9.25 and E12.5 ysE compared to cystic EBs and fetal liver, and the 118 genes expressed higher in both cystic EBs and fetal liver compared to ysE. Values for E12.5 ysE and cystic EBs for these genes are given in Table S2.

Genes expressed differentially higher in E12.5 ysE than in cystic EBs (156 genes)								
RefSeq ID	ysE mean read counts	EBs mean read counts	fold change	P val	padj	gene name		
NM_001111293	796.7	0.0	0.00E+00	5.81E-12	7.1E-09	Xlr5b		
NM_053165	10743.3	12.6	1.17E-03	8.98E-12	8.7E-09	Clec2h		
NM_001033879	2733.8	2.0	7.23E-04	1.12E-11	9.8E-09	Tubal3		
NM_133977	2307265.1	1956.7	8.48E-04	1.09E-11	9.8E-09	Trf		
NM_007994	27599.8	49.6	1.80E-03	9.71E-11	4.6E-08	Fbp2		
NM_001161667	13171.2	9.8	7.46E-04	2.12E-10	8.0E-08	Acox2		
NM_053115	12952.1	10.2	7.86E-04	3.16E-10	1.0E-07	Acox2		
NM_025325	10050.1	15.9	1.58E-03	3.51E-10	1.1E-07	Haao		
NM_133862	176282.0	539.7	3.06E-03	1.13E-09	2.6E-07	Fgg		
NM_001165925	440.0	0.4	8.76E-04	1.23E-09	2.8E-07	Cldn14		
NM_001165926	509.0	0.8	1.57E-03	1.50E-09	3.2E-07	Cldn14		
NM_054094	8690.1	2.5	2.86E-04	2.32E-09	4.5E-07	Acsm1		
NR_027641	5776.3	23.0	3.97E-03	2.42E-09	4.7E-07	Sec16b		
NM_001081361	14030.6	36.8	2.62E-03	2.49E-09	4.8E-07	Mosc1		
NM_033354	5776.7	23.4	4.05E-03	2.55E-09	4.9E-07	Sec16b		
NM_001159986	5957.4	24.0	4.03E-03	2.64E-09	4.9E-07	Sec16b		
NM_026152	11318.9	43.1	3.80E-03	3.25E-09	5.9E-07	Hoga1		
NM_007423	9991957.7	46011.0	4.60E-03	3.64E-09	6.4E-07	Afp		
NM_001033411	1036.7	2.4	2.32E-03	4.24E-09	7.1E-07	Gm826		
NM_178669	9957.6	55.5	5.57E-03	4.58E-09	7.6E-07	Clrn3		
NM_028078	4126.9	19.5	4.73E-03	4.64E-09	7.6E-07	Igsf5		
NM_001177887	4146.4	20.3	4.91E-03	5.19E-09	8.2E-07	Igsf5		
NM_027819	1023.7	3.4	3.34E-03	5.24E-09	8.2E-07	Ggt6		
NM_001177886	2874.8	14.9	5.20E-03	5.72E-09	8.9E-07	Igsf5		
NM_001127318	9453.8	49.3	5.21E-03	1.33E-08	1.8E-06	Gucy2c		
NM_145067	9182.9	48.4	5.27E-03	1.34E-08	1.8E-06	Gucy2c		
NM_027237	1094.2	5.4	4.91E-03	1.49E-08	2.0E-06	2010003K11Rik		
NM_183094	358.1	1.6	4.55E-03	1.93E-08	2.3E-06	Xlr4c		
NM_172778	53726.9	330.3	6.15E-03	1.97E-08	2.4E-06	Maob		
NM_001045539	2567.0	22.6	8.82E-03	2.26E-08	2.6E-06	Xlr5a		
NM_010231	66268.8	442.3	6.67E-03	2.38E-08	2.7E-06	Fmo1		
NM_009034	4370.1	32.1	7.36E-03	2.46E-08	2.8E-06	Rbp2		
NM_001033478	361.4	1.3	3.59E-03	5.03E-08	4.9E-06	Fam47e		
NM_016674	14825.9	107.0	7.21E-03	5.32E-08	5.1E-06	Cldn1		
NM_029269	121494.5	977.6	8.05E-03	5.74E-08	5.4E-06	Spp2		
NM_010189	75629.6	501.8	6.63E-03	5.79E-08	5.4E-06	Fcgrt		
NM_019500	299.9	0.9	3.13E-03	6.37E-08	5.8E-06	Cldn14		
NM_001142706	70469.3	660.4	9.37E-03	6.96E-08	6.3E-06	Сfb		
NM_008198	70639.6	664.3	9.40E-03	7.04E-08	6.3E-06	Сfb		
NM_144512	7948.9	36.1	4.54E-03	7.22E-08	6.4E-06	Slc6a13		

Table S1. Differential expression between E12.5 ysE and cystic EBs for 272 genes that distinguish E9.5 and E12.5 ysE from cystic EBs and fetal liver.

NM_026656	18180.1	133.2	7.32E-03	7.75E-08	6.8E-06	Mcoln2
NM_001005846	17459.7	129.4	7.41E-03	7.91E-08	6.9E-06	Mcoln2
NM_001170571	327.9	1.3	3.96E-03	8.10E-08	7.1E-06	Fam47e
NM_146020	3178.0	23.5	7.40E-03	8.72E-08	7.5E-06	Gltpd2
NM_001081205	8813.7	70.7	8.02E-03	9.08E-08	7.7E-06	Nipal1
NM_144878	7887.9	83.4	1.06E-02	1.04E-07	8.7E-06	Fmo4
NM_001136237	46758.3	380.0	8.13E-03	1.08E-07	9.0E-06	Slc39a5
NM_028092	46267.8	382.1	8.26E-03	1.13E-07	9.4E-06	Slc39a5
NM_001110784	11600.5	116.0	1.00E-02	1.26E-07	1.0E-05	Xlr3a
NM_028051	45038.9	387.3	8.60E-03	1.31E-07	1.0E-05	Slc39a5
NM_001030291	634.0	5.5	8.62E-03	1.54E-07	1.2E-05	Enpp7
NM_021332	7747.6	65.3	8.42E-03	1.75E-07	1.3E-05	Glp1r
NR_045956	644.5	6.6	1.02E-02	1.91E-07	1.4E-05	4930405D11Rik
NM_001161621	919.8	9.6	1.04E-02	1.91E-07	1.4E-05	Abp1
NM_001161622	919.3	9.6	1.04E-02	1.92E-07	1.4E-05	Abp1
NM_013839	9752.8	88.8	9.11E-03	1.93E-07	1.4E-05	Nr1h3
NM_001177730	9881.9	93.3	9.44E-03	2.01E-07	1.4E-05	Nr1h3
NM_029638	956.8	10.3	1.08E-02	2.02E-07	1.4E-05	Abp1
NM_007468	376310.0	2811.7	7.47E-03	2.44E-07	1.6E-05	Apoa4
NM_001177467	615.1	5.5	8.94E-03	2.51E-07	1.7E-05	Gm7030
NM_001033364	48864.7	513.4	1.05E-02	2.67E-07	1.7E-05	Cdhr2
NM_133867	11006.6	139.4	1.27E-02	3.02E-07	1.9E-05	Eps8l3
NM_021365	761.8	8.4	1.10E-02	3.19E-07	2.0E-05	Xlr4b
NM_001163504	4122.2	19.2	4.67E-03	3.29E-07	2.1E-05	Nr1h4
NM_008290	18720.2	282.1	1.51E-02	3.46E-07	2.1E-05	Hsd17b2
NM_001161355	21363.0	261.8	1.23E-02	3.51E-07	2.1E-05	Timd2
NM_134249	20916.9	258.8	1.24E-02	3.63E-07	2.2E-05	Timd2
NM_009108	4420.2	19.5	4.41E-03	3.91E-07	2.3E-05	Nr1h4
NM_001161356	20583.1	258.8	1.26E-02	3.90E-07	2.3E-05	Timd2
NM_031493	180.3	0.0	0.00E+00	4.04E-07	2.4E-05	Xlr5c
NM_001163700	4442.4	19.5	4.38E-03	4.14E-07	2.4E-05	Nr1h4
NM_009692	416208.1	5573.3	1.34E-02	5.02E-07	2.8E-05	Apoa1
NM_145365	16486.5	235.5	1.43E-02	5.66E-07	3.0E-05	Creb3l3
NM_028104	2322.3	29.0	1.25E-02	7.97E-07	3.9E-05	Ppp1r14d
<u>NM_011395</u>	5161.3	78.1	1.51E-02	8.09E-07	4.0E-05	Slc22a3
NM_010197	10717.8	159.4	1.49E-02	8.90E-07	4.3E-05	Fgf1
NM_008670	313.8	4.5	1.42E-02	1.12E-06	5.1E-05	Naip1
NM_001195596	1589.2	24.2	1.53E-02	1.15E-06	5.2E-05	2010003K15Rik
NM_026779	10300.4	136.5	1.32E-02	1.40E-06	6.1E-05	Mocos
NM_023219	1013.4	14.3	1.41E-02	1.59E-06	6.7E-05	Slc5a4b
NM_175370	446.2	6.7	1.50E-02	1.74E-06	7.2E-05	Als2cr12
NM_013474	99921.5	2074.8	2.08E-02	1.89E-06	7.8E-05	Apoa2
NM_178257	10438.0	195.6	1.87E-02	2.70E-06	1.0E-04	1122ra1
NM_174846	12167.6	231.3	1.90E-02	3.74E-06	1.4E-04	Glyctk
NM_001039586	11603.1	229.0	1.97E-02	4.25E-06	1.5E-04	Glyctk

NR_045443	1258.5	34.2	2.72E-02	4.43E-06	1.6E-04	1700019B21Rik
NM_011367	97.1	1.7	1.79E-02	5.62E-06	1.9E-04	Shbg
NR_015596	1425.8	26.0	1.82E-02	5.68E-06	1.9E-04	4930442L01Rik
NM_194333	5972.1	133.4	2.23E-02	5.75E-06	1.9E-04	Slc23a3
NR_045442	1163.1	34.0	2.92E-02	6.08E-06	2.0E-04	1700019B21Rik
NM_001173500	2351.5	55.0	2.34E-02	6.74E-06	2.2E-04	G630090E17Rik
NM_019432	22626.1	500.2	2.21E-02	7.13E-06	2.3E-04	Tmem37
NM_016675	22634.4	672.1	2.97E-02	7.12E-06	2.3E-04	Cldn2
NM_172825	950.4	29.2	3.07E-02	7.37E-06	2.3E-04	Gpr128
NM_023059	17218.7	341.7	1.98E-02	8.18E-06	2.5E-04	Sigirr
NM_001177872	2203.9	53.5	2.43E-02	8.99E-06	2.7E-04	Trim15
NM_001144993	17566.1	415.3	2.36E-02	9.20E-06	2.8E-04	2810459M11Rik
NM_001144992	17569.6	415.3	2.36E-02	9.19E-06	2.8E-04	2810459M11Rik
NM_025806	19873.6	583.5	2.94E-02	1.04E-05	3.1E-04	Plbd1
NM_001024134	2270.3	56.9	2.51E-02	1.08E-05	3.2E-04	Trim15
NM_001159725	9664.2	296.5	3.07E-02	1.17E-05	3.4E-04	Rab17
NM_018816	75391.1	2018.3	2.68E-02	1.25E-05	3.6E-04	Apom
NM_008998	10844.8	333.6	3.08E-02	1.26E-05	3.6E-04	Rab17
NM_134420	7467.1	180.6	2.42E-02	1.43E-05	4.0E-04	Slc26a6
NM_023530	14481.4	450.4	3.11E-02	1.67E-05	4.5E-04	Pla2g12b
NM_001161714	13108.9	377.8	2.88E-02	2.00E-05	5.2E-04	Tgm1
NM_001161715	13149.8	381.4	2.90E-02	2.04E-05	5.3E-04	Tgm1
NM_019984	12779.9	372.9	2.92E-02	2.08E-05	5.4E-04	Tgm1
NM_175512	3208.6	124.8	3.89E-02	2.08E-05	5.4E-04	Dhrs9
NM_178413	22709.1	632.4	2.78E-02	2.55E-05	6.4E-04	Thnsl2
NM_001033929	22610.9	630.4	2.79E-02	2.57E-05	6.4E-04	Thnsl2
NM_001081642	628.5	23.9	3.80E-02	3.28E-05	7.8E-04	Xlr4a
NM_133226	5711.1	206.9	3.62E-02	3.76E-05	8.6E-04	Pdzd3
NM_033603	26291.7	823.1	3.13E-02	6.11E-05	1.3E-03	Amn
NM_007980	2982.8	136.2	4.57E-02	6.16E-05	1.3E-03	Fabp2
NM_029360	564.1	23.1	4.09E-02	6.27E-05	1.3E-03	Tm4sf5
NM_172938	497.0	15.5	3.12E-02	6.79E-05	1.4E-03	Scml4
NM_001199996	66401.4	3179.3	4.79E-02	6.83E-05	1.4E-03	4933402E13Rik
NM_001122660	28.3	0.3	1.18E-02	7.22E-05	1.5E-03	Gm10639
<u>NM_001199997</u>	67065.0	3258.5	4.86E-02	7.24E-05	1.5E-03	4933402E13Rik
NM_020577	15312.0	677.6	4.43E-02	7.98E-05	1.6E-03	As3mt
NM_021291	8551.6	375.8	4.39E-02	9.72E-05	1.8E-03	Slc7a9
NM_008125	10878.6	568.7	5.23E-02	9.80E-05	1.8E-03	Gjb2
NM_001199016	8929.9	399.8	4.48E-02	9.90E-05	1.9E-03	Slc7a9
NM_001199015	8980.8	411.8	4.59E-02	1.07E-04	2.0E-03	Slc7a9
NM_001252553	39712.2	1935.1	4.87E-02	1.23E-04	2.2E-03	Foir1
NNI_001252554	39412.8	1932.1	4.90E-02	1.26E-04	2.2E-03	roiri
NM_001033410	1016.6	44.5	4.38E-02	1.27E-04	2.3E-03	Gm/5/
NM_008034	40397.3	2010.6	4.98E-02	1.32E-04	2.3E-03	Folri
NM_001252552	40401.9	2010.8	4.98E-02	1.32E-04	2.3E-03	Folr1

NR_028061	3481.1	214.6	6.16E-02	1.53E-04	2.6E-03	Gm8615
NM_001025384	176.7	6.0	3.40E-02	2.03E-04	3.3E-03	DXBay18
NM_001025383	175.5	6.0	3.42E-02	2.08E-04	3.3E-03	Gm14685
NM_001193309	92799.0	5482.0	5.91E-02	2.14E-04	3.4E-03	Morc4
NM_029413	93614.4	5550.6	5.93E-02	2.17E-04	3.4E-03	Morc4
NM_001113385	5761.0	2.9	5.02E-04	2.42E-04	3.7E-03	BC021785
NM_008261	42486.2	2510.2	5.91E-02	2.65E-04	4.0E-03	Hnf4a
NM_009695	35258.2	2733.0	7.75E-02	3.81E-04	5.3E-03	Арос2
NM_021517	43510.2	711.7	1.64E-02	4.54E-04	6.1E-03	Pdzk1
NM_029494	5723.1	390.3	6.82E-02	4.57E-04	6.1E-03	Rab30
NM_001201390	108.3	7.1	6.60E-02	4.73E-04	6.3E-03	E330021D16Rik
NM_008221	20344.1	1209.8	5.95E-02	5.43E-04	7.1E-03	Hbb-y
NM_026680	1908.0	129.6	6.79E-02	5.52E-04	7.1E-03	Golt1a
NM_001146001	42297.2	697.9	1.65E-02	5.77E-04	7.4E-03	Pdzk1
NM_025572	7495.7	467.7	6.24E-02	6.23E-04	7.8E-03	2610528J11Rik
NM_001033423	688.1	0.7	1.03E-03	6.38E-04	8.0E-03	Gm773
NM_001081084	239835.8	19847.4	8.28E-02	6.68E-04	8.3E-03	Cubn
NM_001001489	3911.3	2.9	7.40E-04	9.47E-04	1.1E-02	BC021785
NM_001033185	259.9	17.7	6.81E-02	1.03E-03	1.2E-02	1700084C01Rik
NM_011683	29.3	0.0	Inf	1.27E-03	1.4E-02	Vmn1r51
NM_001025384_2	166.8	10.8	6.50E-02	1.42E-03	1.5E-02	DXBay18
NM_001025383_2	166.0	10.8	6.53E-02	1.45E-03	1.5E-02	Gm14685
NM_001113388	2387.8	40.3	1.69E-02	2.54E-03	2.4E-02	BC021785
NR_015519	201.4	15.4	7.63E-02	3.14E-03	2.8E-02	AI662270
NM_001085529	166.6	8.8	5.26E-02	3.41E-03	3.0E-02	Slc2a7
NR_033324	12008.0	1521.5	1.27E-01	3.73E-03	3.2E-02	BC065397
Genes	expressed diffe	rentially highe	r in cystic EB	s than in E12	2.5 ysE (118	genes)
gene name	ysE mean read counts	EBs mean read counts	fold change	P val	padj	gene name
NM_080728	0.7	7993.8	1.13E+04	1.53E-18	4.3E-14	Myh7
NM_008440	7.9	7454.2	9.39E+02	8.15E-15	3.3E-11	Kif1a
NM_001110315	7.9	7453.5	9.39E+02	8.16E-15	3.3E-11	Kif1a
NM_021459	0.0	932.7	Inf	9.10E-14	2.0E-10	Isl1
NM_011443	10.0	6823.1	6.85E+02	7.62E-14	2.0E-10	Sox2
NM_133197	1.1	987.8	9.26E+02	9.52E-14	2.0E-10	Mcf2
NM_010910	1.7	1601.0	9.64E+02	4.30E-13	8.0E-10	Nefl
NM_025274	9.9	4917.1	4.99E+02	6.23E-13	1.1E-09	Dppa5a
NM_001080814	5.2	2425.5	4.63E+02	4.30E-12	6.0E-09	Fat3
NM_022879	0.9	2877.9	3.26E+03	5.30E-12	7.1E-09	Myl7
NR_033497	0.0	239.8	Inf	7.10E-12	7.8E-09	D830015G02Rik
NM_172399	0.0	311.8	Inf	7.22E-12	7.8E-09	A930038C07Rik
NM_007430	0.0	576.6	Inf	8.98E-12	8.7E-09	Nr0b1
NM_001081281	0.0	202.8	Inf	2.21E-11	1.7E-08	Trim55
NM_011889	1.8	808.3	4.42E+02	3.06E-11	2.2E-08	Sep-03
NM_010112	4.2	1290.7	3.08E+02	4.00E-11	2.3E-08	Efs

NM_008671	0.5	350.1	6.56E+02	3.87E-11	2.3E-08	Nap1l2
NM_023396	1.5	577.5	3.80E+02	7.68E-11	3.9E-08	Rprm
NM_010703	0.7	385.4	5.43E+02	1.05E-10	4.7E-08	Lef1
NM_001198565	48.5	9107.2	1.88E+02	1.21E-10	5.3E-08	Sulf1
NM_001198566	48.2	8910.6	1.85E+02	1.34E-10	5.5E-08	Sulf1
NM_172294	47.9	8545.0	1.78E+02	1.57E-10	6.3E-08	Sulf1
NM_009994	3.2	800.3	2.52E+02	1.99E-10	7.6E-08	Cyp1b1
NM_009189	0.7	333.1	4.70E+02	2.14E-10	8.0E-08	Six1
NM_028351	3.7	890.3	2.42E+02	2.20E-10	8.0E-08	Rspo3
NM_178394	1.1	415.9	3.92E+02	2.21E-10	8.0E-08	Jakmip1
NM_172430	2.1	613.2	2.85E+02	2.25E-10	8.1E-08	Sphkap
NR_002874	0.0	521.5	Inf	2.37E-10	8.3E-08	Has2as
NM_001113181	0.9	289.0	3.36E+02	2.79E-10	9.4E-08	Gria4
NM_009865	0.0	156.9	Inf	2.97E-10	9.9E-08	Cdh10
NM_011382	14.3	2394.2	1.67E+02	3.77E-10	1.2E-07	Six4
NM_009911	5.3	1119.0	2.11E+02	4.03E-10	1.2E-07	Cxcr4
NM_145123	0.0	145.1	Inf	4.45E-10	1.3E-07	Crtac1
NM_001077354	4.3	851.5	1.96E+02	5.50E-10	1.6E-07	C77370
NM_028882	5.0	858.0	1.71E+02	6.30E-10	1.7E-07	Sema3d
NM_018741	0.0	135.4	Inf	7.33E-10	1.9E-07	Igfbpl1
NM_025285	3.5	1680.4	4.77E+02	8.27E-10	2.0E-07	Stmn2
NM_008108	1.9	372.6	1.95E+02	8.82E-10	2.2E-07	Gdf3
NM_183171	2.4	503.7	2.12E+02	1.44E-09	3.2E-07	Fez1
NM_019691	2.0	372.6	1.82E+02	2.10E-09	4.3E-07	Gria4
NM_001113180	2.0	370.7	1.81E+02	2.16E-09	4.3E-07	Gria4
NM_198865	0.5	179.3	3.49E+02	2.59E-09	4.9E-07	Slitrk5
NM_007603	44.0	5718.2	1.30E+02	2.69E-09	5.0E-07	Сарпб
NM_001204371	0.0	111.3	Inf	3.03E-09	5.6E-07	Oprk1
NM_011011	0.0	110.3	Inf	3.21E-09	5.8E-07	Oprk1
NM_008800	6.1	762.7	1.25E+02	3.31E-09	5.9E-07	Pde1b
NM_019784	0.0	103.2	Inf	6.09E-09	9.2E-07	Tex21
NM_028472	9.6	1232.6	1.29E+02	6.18E-09	9.3E-07	Bmper
NM_030708	11.4	1384.5	1.22E+02	6.35E-09	9.5E-07	Zfhx4
NM_001159532	0.0	102.2	Inf	6.49E-09	9.7E-07	Tex21
NM_007960	4.3	501.5	1.17E+02	8.23E-09	1.2E-06	Etv1
NM_001163154	3.4	383.3	1.14E+02	1.03E-08	1.4E-06	Etv1
NM_008741	1.9	298.2	1.56E+02	1.07E-08	1.5E-06	Nsg2
NM_001164504	2.2	319.8	1.49E+02	1.40E-08	1.8E-06	Rnf165
NM_172706	2.1	172.5	8.08E+01	1.60E-08	2.1E-06	9330182L06Rik
NM_009234	159.9	13493.0	8.44E+01	1./9E-08	2.2E-06	
NNI_1/5452	22.5	2106.4	9.30E+01	2.13E-08	2.5E-06	1 mem132c
NM 001160120	4.0	561 7	1.21E+02	2.07E.09	3.3E-00	Keng5
NM 052144	4.6	170.0	1.21E+02	3.07E-08	3.3E-00	NCNQ5 Dodbb19
NIM 010425	1.2	1/9.0	0.01E+02	3.29E-08	3.3E-00	Found 2
NNI_010425	1.9	171.1	8.81E+01	3./8E-08	3.9E-06	roxas

NM_001081009	8.3	712.3	8.63E+01	4.07E-08	4.1E-06	Parp8
NM_183177	3.4	331.9	9.64E+01	4.55E-08	4.5E-06	Zfp811
NM_025681	3.0	318.8	1.05E+02	4.88E-08	4.8E-06	Lix1
NR_028107	0.0	67.0	Inf	5.17E-08	5.0E-06	1700058G18Rik
NM_010059	4.9	454.9	9.30E+01	5.17E-08	5.0E-06	Dmc1
NM_021452	1.6	148.3	9.04E+01	5.99E-08	5.6E-06	Kcnmb4
NR_015595	0.3	98.4	3.35E+02	8.25E-08	7.2E-06	2410137F16Rik
NM_133189	1.6	107.2	6.70E+01	8.71E-08	7.5E-06	Cacng7
NM_182809	0.0	50.2	Inf	9.03E-08	7.7E-06	Ntrk3
NM_053146	0.5	109.0	2.31E+02	9.15E-08	7.8E-06	Pcdhb21
NM_013904	7.3	603.8	8.23E+01	9.39E-08	7.9E-06	Hey2
NM_009152	14.5	1043.2	7.19E+01	1.10E-07	9.2E-06	Sema3a
NM_001159648	1.7	155.6	9.29E+01	1.41E-07	1.1E-05	Cntn1
NM_001243073	14.5	991.7	6.83E+01	1.49E-07	1.2E-05	Sema3a
NM_001243072	14.5	990.9	6.83E+01	1.50E-07	1.2E-05	Sema3a
NM_053242	4.6	341.4	7.39E+01	1.62E-07	1.2E-05	Foxp2
NM_007727	1.7	149.1	8.90E+01	1.74E-07	1.3E-05	Cntn1
NM_026380	0.0	49.6	Inf	1.76E-07	1.3E-05	Rgs8
NM_001159647	1.7	148.0	8.84E+01	1.80E-07	1.3E-05	Cntn1
NM_175549	37.6	2425.6	6.44E+01	2.35E-07	1.6E-05	Robo2
NM_010259	5.2	355.6	6.80E+01	3.09E-07	2.0E-05	Gbp1
NM_212435	4.6	299.6	6.49E+01	3.32E-07	2.1E-05	Foxp2
NM_010298	5.2	301.0	5.81E+01	3.79E-07	2.2E-05	Glrb
NM_008746	0.0	38.5	Inf	4.16E-07	2.4E-05	Ntrk3
NM_011824	0.3	75.6	2.63E+02	4.22E-07	2.4E-05	Grem1
NM_053142	2.6	203.1	7.87E+01	4.75E-07	2.7E-05	Pcdhb17
NM_001163691	16.1	712.2	4.43E+01	6.28E-07	3.2E-05	Cacna1h
NM_001033408	5.8	327.4	5.62E+01	6.63E-07	3.3E-05	Rbm44
NM_021415	16.3	716.0	4.39E+01	6.66E-07	3.3E-05	Cacna1h
NM_009182	1.9	123.9	6.42E+01	7.32E-07	3.6E-05	St8sia3
NM_001160371	0.6	295.6	5.03E+02	9.57E-07	4.5E-05	A830018L16Rik
NM_016663	0.0	29.4	Inf	9.50E-07	4.5E-05	Syt3
NM_001160370	0.6	306.4	5.21E+02	9.74E-07	4.6E-05	A830018L16Rik
NM_001114116	0.0	29.3	Inf	9.80E-07	4.6E-05	Syt3
NR_045053	10.6	480.0	4.53E+01	1.12E-06	5.1E-05	2610307P16Rik
NM_009062	7.3	306.8	4.18E+01	1.39E-06	6.1E-05	Rgs4
NR_045054	12.0	499.5	4.16E+01	1.46E-06	6.3E-05	2610307P16Rik
NM_018800	0.6	57.1	9.71E+01	2.54E-06	9.9E-05	Syt6
NM_007664	84.2	2930.5	3.48E+01	3.23E-06	1.2E-04	Cdh2
NM_001190352	1.0	100.5	9.60E+01	3.78E-06	1.4E-04	Tmem132b
NM_001081388	0.5	53.7	1.05E+02	3.78E-06	1.4E-04	Kimbp2
NM_198863	2.9	125.5	4.26E+01	4.60E-06	1.6E-04	Shtrk2
NM_001161431	2.9	123.4	4.19E+01	4.90E-06	1.7E-04	Slitrk2
NM_010861	1.1	245.5	2.14E+02	5.12E-06	1.8E-04	Myl2
NR_015455	1.1	65.0	6.05E+01	5.51E-06	1.9E-04	BC064078

NM_177615	11.2	343.5	3.06E+01	1.32E-05	3.8E-04	Slc26a10
NM_001085521	2.1	77.1	3.63E+01	2.13E-05	5.5E-04	Tmem90b
NM_013540	6.7	198.3	2.97E+01	2.96E-05	7.2E-04	Gria2
NM_001083806	6.7	196.9	2.95E+01	3.04E-05	7.4E-04	Gria2
NM_001160369	4.5	202.8	4.55E+01	5.22E-05	1.1E-03	A830018L16Rik
NM_177173	4.5	202.5	4.55E+01	5.49E-05	1.2E-03	A830018L16Rik
NM_001039195	6.2	155.5	2.52E+01	6.72E-05	1.4E-03	Gria2
NM_009144	22.3	390.2	1.75E+01	9.96E-05	1.9E-03	Sfrp2
NM_007831	1.9	48.4	2.60E+01	1.48E-04	2.5E-03	Dcc
NM_175506	15.2	261.4	1.72E+01	1.72E-04	2.9E-03	Adamts19
NM_010140	21.4	241.2	1.13E+01	1.76E-03	1.8E-02	Epha3
NM_010816	72.7	607.2	8.36E+00	2.92E-03	2.6E-02	Morc1

Genes showing no significant differential expression between E9.25 and E12.5 ysE and no significant differential expression between cystic EBs and E12.5 fetal liver, that are significantly differentially expressed between ysE and cystic EBs/fetal liver (Fig. 5B, Fig. S5E, 272 genes, 156 genes higher in ysE, 118 genes higher in cystic EBs/fetal liver). Values for E12.5 ysE vs. cystic EBs are displayed calculated using the DESeq package from BioConductor.

Key: P val = p value, padj = p value adjusted with the Benjamini-Hochberg procedure, Inf = infinite fold change.

Table S2. ES cell media for deriving new ES cell lines

SR-ES Medium

ES Medium

DMEM (Gibco, cat.nr: 12430)	500ml
KO-Serum (Gibco, cat.nr: 10828)	100ml
Non-essential amino acids (100x)	6ml
Penicillin/Streptomycin (100x)	6ml
Natrium-Pyruvat (100x)	6ml
L-Glutamine (100x)	6ml
β-Mercaptoethanol (55mmol)	1092µl
LIF (Millipore, cat.nr: ESG1107)	120µl

DMEM (Gibco, cat.nr: 12430)	500ml
FCS (Gibco, cat.nr: 10270-106)	100ml
Non-essential amino acids (100x)	6ml
Penicillin/Streptomycin (100x)	6ml
Natrium-Pyruvat (100x)	6ml
L-Glutamine (100x)	6ml
β-Mercaptoethanol (55mmol)	1092µl
LIF (Millipore, cat.nr: ESG1107)	120µl

Table S3. Primer sequences

Primers for RT-PCR reactions (Fig. 1D-F) and whole mount <i>in situ</i> probes (*, Fig. 1G-H, Fig. S1)					
Gene	Forward	Reverse			
Actb	CCACCATGTACCCAGGCATT	AGGGTGTAAAACGCAGCTCA			
Afp*	AGAGAATGGCGTCAAACCTG	GGCTTTCCTCGTGTAACCAA			
Amn	CAGGAGGCGACTCGGACCCA	CACTGCCGAGACGCTGCGAA			
Gata4	CAGCCCAGTCCTGCACAGCC	GGGCCGGTTGATGCCGTTCA			
Hnf4a	GGAGGAGGCAGGAGGAGGGC	ATGGCGCACAGGGCACTGAC			
Ins2	CCATCAGCAAGCAGGAAGGT	GCTGGTGCAGCACTGATCTA			
Lefty1*	GACCCTTTCAGGACACCTCAG	TGTGTGGGGGACAGCCTCTTT			
Mix11	TGCTCCTGGGACTGAAGCTA	CAACGCTCCCAGAATCCTCA			
Pyy*	TAATCCTGCTCGCCTGTCTG	TTCACCACTGGTCCAAACCT			
Slc22a2	AGAGTCGTCCTGAGCTGACC	AACTCAGTGACGATGGAGGAG			
Slc22a3	ACTCACTGCCTTCCCCAAC	AGAGATGGCTAGCTGGATGC			
Sox17	GGAGGGAGGGTCACCACTGCT	CTATGGCCACGGGACACGCC			
Sox7	CTGTCCGGATGGGCTGTCGCC	TTCTTCCTGCGGGGGCCGGTA			
Tfpi2	TTTGCCGCTGCTCCTGGTGG	TGGCATTGCCCAAGCAGCCT			
Ttr*	AGACCTCTGAGGGATCCTGG	ATGGGATGCTACTGCTTTGG			
Primers use	d for Sanger sequencing RT-PCR amplicon	ns (Fig.2C,D; Fig.S2)			
Gene	Forward	Reverse			
Gene Airn	Forward TGCAGAAAAATGGCTCTGTTCTTA	Reverse ACCGTAACAGTTTCACCTACGA			
Gene Airn Cd81	Forward TGCAGAAAAATGGCTCTGTTCTTA AGCTGTCATTATGATCTTTGAGATG	Reverse ACCGTAACAGTTTCACCTACGA AATGGAGGCAGGAAAGGAACA			
Gene Airn Cd81 Cdknc1	Forward TGCAGAAAAATGGCTCTGTTCTTA AGCTGTCATTATGATCTTTGAGATG CAGGGTGTCCCTCTCCAAAC	Reverse ACCGTAACAGTTTCACCTACGA AATGGAGGCAGGAAAGGAACA TTTACACCTTGGGACCAGCG			
Gene Airn Cd81 Cdknc1 Igf2	Forward TGCAGAAAAATGGCTCTGTTCTTA AGCTGTCATTATGATCTTTGAGATG CAGGGTGTCCCTCTCCAAAC GGGGGTGTCAATTGGGTTGT	Reverse ACCGTAACAGTTTCACCTACGA AATGGAGGCAGGAAAGGAACA TTTACACCTTGGGACCAGCG CCTCTTCGGAGATGTCCAGC			
Gene Airn Cd81 Cdknc1 Igf2 Igf2r	Forward TGCAGAAAAATGGCTCTGTTCTTA AGCTGTCATTATGATCTTTGAGATG CAGGGTGTCCCTCTCCAAAC GGGGGTGTCAATTGGGTTGT TCAGCAGGAAAGTAGGCACC	ReverseACCGTAACAGTTTCACCTACGAAATGGAGGCAGGAAAGGAACATTTACACCTTGGGACCAGCGCCTCTTCGGAGATGTCCAGCGACTCCGCTCTGAGAGTCCT			
Gene Airn Cd81 Cdknc1 Igf2 Igf2r Kcnq1ot1	ForwardTGCAGAAAAATGGCTCTGTTCTTAAGCTGTCATTATGATCTTTGAGATGCAGGGTGTCCCTCTCCAAACGGGGGTGTCAATTGGGTTGTTCAGCAGGAAAGTAGGCACCCCAGACCCGATTCGGTTTCA	ReverseACCGTAACAGTTTCACCTACGAAATGGAGGCAGGAAAGGAACATTTACACCTTGGGACCAGCGCCTCTTCGGAGATGTCCAGCGACTCCGCTCTGAGAGTCCTGGCCAGAAGCAGAGGTGATT			
Gene Airn Cd81 Cdknc1 Igf2 Igf2r Kcnq1ot1 Osbpl5	ForwardTGCAGAAAAATGGCTCTGTTCTTAAGCTGTCATTATGATCTTTGAGATGCAGGGTGTCCCTCTCCAAACGGGGGTGTCAATTGGGTTGTTCAGCAGGAAAGTAGGCACCCCAGACCCGATTCGGTTTCATTCTCTCTCACGGACTGCCCA	ReverseACCGTAACAGTTTCACCTACGAAATGGAGGCAGGAAAGGAACATTTACACCTTGGGACCAGCGCCTCTTCGGAGATGTCCAGCGACTCCGCTCTGAGAGTCCTGGCCAGAAGCAGAGGTGATTGAAGTCTCGTCCAGCTCTCC			
Gene Airn Cd81 Cdknc1 Igf2 Igf2r Kcnq1ot1 Osbpl5 Peg10	ForwardTGCAGAAAAATGGCTCTGTTCTTAAGCTGTCATTATGATCTTTGAGATGCAGGGTGTCCCTCTCCAAACGGGGGTGTCAATTGGGTTGTTCAGCAGGAAAGTAGGCACCCCAGACCCGATTCGGTTTCATTCTCTCTACGGACTGCCCATCCACCCATTTGTCTGCCAT	ReverseACCGTAACAGTTTCACCTACGAAATGGAGGCAGGAAAGGAACATTTACACCTTGGGACCAGCGCCTCTTCGGAGATGTCCAGCGACTCCGCTCTGAGAGTCCTGGCCAGAAGCAGAGGTGATTGAAGTCTCGTCCAGCTCTCCGGCCTGCCTCTTTCATCTCC			
Gene Airn Cd81 Cdknc1 Igf2 Igf2r Kcnq1ot1 Osbpl5 Peg10 Pon2	ForwardTGCAGAAAAATGGCTCTGTTCTTAAGCTGTCATTATGATCTTTGAGATGCAGGGTGTCCCTCTCCAAACGGGGGTGTCAATTGGGTTGTTCAGCAGGAAAGTAGGCACCCCAGACCCGATTCGGTTTCATTCTCTCTCACGGACTGCCCATCCACCCATTTGTCTGCCATCTCAAGTTTCCAGGGCTCCA	ReverseACCGTAACAGTTTCACCTACGAAATGGAGGCAGGAAAGGAACATTTACACCTTGGGACCAGCGCCTCTTCGGAGATGTCCAGCGACTCCGCTCTGAGAGTCCTGGCCAGAAGCAGAGGTGATTGAAGTCTCGTCCAGCTCTCCGGCCTGCCTCTTTCATCTCCCATCTATGAAAGTGCTAATGCCATGT			
Gene Airn Cd81 Cdknc1 Igf2 Igf2r Kcnq1ot1 Osbpl5 Peg10 Pon2 Ppp1r9a	ForwardTGCAGAAAAATGGCTCTGTTCTTAAGCTGTCATTATGATCTTTGAGATGCAGGGTGTCCCTCTCCAAACGGGGGTGTCAATTGGGTTGTTCAGCAGGAAAGTAGGCACCCCAGACCCGATTCGGTTTCATTCTCTCTACGGACTGCCCATCCACCCATTTGTCTGCCATCTCAAGTTTCCAGGGCTCCAAAGTCTGCCCTGCCTGTAAC	ReverseACCGTAACAGTTTCACCTACGAAATGGAGGCAGGAAAGGAACATTTACACCTTGGGACCAGCGCCTCTTCGGAGATGTCCAGCGACTCCGCTCTGAGAGTGCCTGGCCAGAAGCAGAGGTGATTGAAGTCTCGTCCAGCTCTCCGGCCTGCCTCTTTCATCTCCCATCTATGAAAGTGCTAATGCCATGTTTTGTTTCCACACCGGACCA			
Gene Airn Cd81 Cdknc1 Igf2 Igf2r Kcnq1ot1 Osbp15 Peg10 Pon2 Ppp1r9a Sfmbt2	ForwardTGCAGAAAAATGGCTCTGTTCTTAAGCTGTCATTATGATCTTTGAGATGCAGGGTGTCCCTCTCCAAACGGGGGTGTCAATTGGGTTGTTCAGCAGGAAAGTAGGCACCCCAGACCCGATTCGGTTTCATTCTCTCTACGGACTGCCCATCCACCCATTTGTCTGCCATCTCAAGTTTCCAGGGCTCCAAAGTCTGCCCTGCCTGTAACCGCAGAGGAGGACGACGTGTTGCC	ReverseACCGTAACAGTTTCACCTACGAAATGGAGGCAGGAAAGGAACATTTACACCTTGGGACCAGCGCCTCTTCGGAGATGTCCAGCGACTCCGCTCTGAGAGTCCTGGCCAGAAGCAGAGGTGATTGAAGTCTCGTCCAGCTCTCCGGCCTGCCTCTTTCATCTCCCATCTATGAAAGTGCTAATGCCATGTTTTGTTTCCACACCGGACCACTGGAGGGCGCTGGCACTTC			
Gene Airn Cd81 Cdknc1 Igf2 Igf2r Kcnq1ot1 Osbpl5 Peg10 Pon2 Ppp1r9a Sfmbt2 (Cast x FVB)	ForwardTGCAGAAAAATGGCTCTGTTCTTAAGCTGTCATTATGATCTTTGAGATGCAGGGTGTCCCTCTCCAAACGGGGGTGTCAATTGGGTTGTTCAGCAGGAAAGTAGGCACCCCAGACCCGATTCGGTTTCATTCTCTCTACGGACTGCCCATCCACCCATTTGTCTGCCATCTCAAGTTTCCAGGGCTCCAAAGTCTGCCCTGCCTGTAACCGCAGAGGAGGAGGACGTGTTGCC	ReverseACCGTAACAGTTTCACCTACGAAATGGAGGCAGGAAAGGAACATTTACACCTTGGGACCAGCGCCTCTTCGGAGATGTCCAGCGACTCCGCTCTGAGAGTGTCCTGGCCAGAAGCAGAGGTGATTGAAGTCTCGTCCAGCTCTCCGGCCTGCCTCTTTCATCTCCCATCTATGAAAGTGCTAATGCCATGTTTTGTTTCCACACCGGACCACTGGAGGGCGCTGGCACTTC			
Gene Airn Cd81 Cdknc1 Igf2 Igf2r Kcnq1ot1 Osbp15 Peg10 Pon2 Ppp1r9a Sfmbt2 (Cast x FVB) Sfmbt2	ForwardTGCAGAAAAATGGCTCTGTTCTTAAGCTGTCATTATGATCTTTGAGATGCAGGGTGTCCCTCTCCAAACGGGGGTGTCAATTGGGTTGTTCAGCAGGAAAGTAGGCACCCCAGACCCGATTCGGTTTCATTCTCTCTACGGACTGCCCATCCACCCATTTGTCTGCCATCTCAAGTTTCCAGGGCTCCAAAGTCTGCCCTGCCTGTAACCGCAGAGGAGGAGGACGTGTTGCCAATGGAAATGCCACCTCAAC	ReverseACCGTAACAGTTTCACCTACGAAATGGAGGCAGGAAAGGAACATTTACACCTTGGGACCAGCGCCTCTTCGGAGATGTCCAGCGACTCCGCTCTGAGAGTCCTGGCCAGAAGCAGAGGTGATTGAAGTCTCGTCCAGCTCTCCGGCCTGCCTCTTTCATCTCCCATCTATGAAAGTGCTAATGCCATGTTTTGTTTCCACACCGGACCACTGGAGGGCGCTGGCACTTCCGTCTGAAGATGGCAGTGAA			
Gene Airn Cd81 Cdknc1 Igf2 Igf2r Kcnq1ot1 Osbpl5 Peg10 Pon2 Ppp1r9a Sfmbt2 (Cast x FVB) Sfmbt2 (Bl6 x 129)	ForwardTGCAGAAAAATGGCTCTGTTCTTAAGCTGTCATTATGATCTTTGAGATGCAGGGTGTCCCTCTCCAAACGGGGGTGTCAATTGGGTTGTTCAGCAGGAAAGTAGGCACCCCAGACCCGATTCGGTTTCATTCTCTCTACGGACTGCCCATCCACCCATTTGTCTGCCATCTCAAGTTTCCAGGGCTCCAAAGTCTGCCCTGCCTGTAACCGCAGAGGAGGAGGACGTGTTGCCAATGGAAATGCCACCTCAAC	Reverse ACCGTAACAGTTTCACCTACGA AATGGAGGCAGGAAAGGAACA TTTACACCTTGGGACCAGCG CCTCTTCGGAGATGTCCAGC GACTCCGCTCTGAGAGGTGATT GGCCAGAAGCAGAGAGGTGATT GAAGTCTCGTCCAGCTCTCC GGCCTGCCTCTTTCATCTCC CATCTATGAAAGTGCTAATGCCATGT TTTGTTTCCACACCGGACCA CTGGAGGGCGCTGGCACTTC			
Gene Airn Cd81 Cdknc1 Igf2 Igf2r Kcnq1ot1 Osbpl5 Peg10 Pon2 Ppp1r9a Sfmbt2 (Cast x FVB) Sfmbt2 (Bl6 x 129) Slc22a3 (Cast x FVB)	ForwardTGCAGAAAAATGGCTCTGTTCTTAAGCTGTCATTATGATCTTTGAGATGCAGGGTGTCCCTCTCCAAACGGGGGTGTCAATTGGGTTGTTCAGCAGGAAAGTAGGCACCCCAGACCCGATTCGGTTTCATTCTCTCTACGGACTGCCCATCCACCCATTTGTCTGCCATCTCAAGTTTCCAGGGCTCCAAAGTCTGCCCTGCCTGTAACCGCAGAGGAGGAGGACGTGTTGCCAATGGAAATGCCACCTCAACACTCACTGCCTTCCCCAAC	ReverseACCGTAACAGTTTCACCTACGAAATGGAGGCAGGAAAGGAACATTTACACCTTGGGACCAGCGCCTCTTCGGAGATGTCCAGCGACTCCGCTCTGAGAGTGCCTGGCCAGAAGCAGAGGGGAGATTGAAGTCTCGTCCAGCTCTCCGGCCTGCCTCTTTCATCTCCCATCTATGAAAGTGCTAATGCCATGTTTTGTTTCCACACCGGACCACTGGAGGGCGCTGGCACTTCCGTCTGAAGATGGCAGTGAAAGAGATGGCTAGCTGGATGC			
Gene Airn Cd81 Cdknc1 Igf2 Igf2r Kcnq1ot1 Osbpl5 Peg10 Pon2 Ppp1r9a Sfmbt2 (Cast x FVB) Sfmbt2 (Bl6 x 129) Slc22a3 (Cast x FVB, Bl6 x 129)	ForwardTGCAGAAAAATGGCTCTGTTCTTAAGCTGTCATTATGATCTTTGAGATGCAGGGTGTCCCTCTCCAAACGGGGGTGTCAATTGGGTTGTTCAGCAGGAAAGTAGGCACCCCAGACCCGATTCGGTTTCATTCTCTCTACGGACTGCCCATCCACCCATTTGTCTGCCATCTCAAGTTTCCAGGGCTCCAAAGTCTGCCCTGCCTGTAACCGCAGAGGAGGAGGACGTGTTGCCAATGGAAATGCCACCTCAACACTCACTGCCTTCCCCAAC	ReverseACCGTAACAGTTTCACCTACGAAATGGAGGCAGGAAAGGAACATTTACACCTTGGGACCAGCGCCTCTTCGGAGATGTCCAGCGACTCCGCTCTGAGAGTGCCTGGCCAGAAGCAGAGGTGATTGAAGTCTCGTCCAGCTCTCCGGCCTGCCTCTTTCATCTCCCATCTATGAAAGTGCTAATGCCATGTTTTGTTTCCACACCGGACCACTGGAGGGCGCTGGCACTTCCGTCTGAAGATGGCAGTGAAAGAGATGGCTAGCTGGATGC			

RNA-seq		Sample information				
Sample	Stage	Genotype	Sex	Seq. depth	Read type	Library prep. Method
Yolk sac endoderm (br.1)	E12.5	FVB/N	M+F	77,019,807	51bp Single End	(Huang et al 2011)
Yolk sac endoderm (br.2)*	E12.5	F1 CAST/FVB	M+F	50,858,688	101bp Paired End	(Sultan et al 2012)
Yolk sac endoderm (br.3)*	E12.5	F1 CAST/FVB	M+F	53,269,491	101bp Paired End	(Sultan et al 2012)
Yolk sac endoderm (br.4)*	E12.5	F1 CAST/FVB	M+F	58,680,944	101bp Paired End	(Sultan et al 2012)
Yolk sac endoderm (br.5)*	E12.5	F1 CAST/FVB	M+F	53,202,468	101bp Paired End	(Sultan et al 2012)
Yolk sac endoderm (br.1)	E9.25	FVB/N	M+F	63,805,819	101bp Paired End	(Sultan et al 2012)
Yolk sac endoderm (br.2)	E9.25	FVB/N	M+F	103,262,624	101bp Paired End	(Sultan et al 2012)
Yolk sac mesoderm (br.1)	E9.25	FVB/N	M+F	69,322,057	101bp Paired End	(Sultan et al 2012)
Yolk sac mesoderm (br.2)	E9.25	FVB/N	M+F	71,521,422	101bp Paired End	(Sultan et al 2012)
Fetal liver (br.1)*	E12.5	F1 CAST/FVB	M+F	51,077,974	101bp Paired End	(Sultan et al 2012)
Fetal liver (br.2)*	E12.5	F1 CAST/FVB	M+F	56,585,937	101bp Paired End	(Sultan et al 2012)
Fetal liver (br.3)*	E12.5	F1 CAST/FVB	M+F	52,303,488	101bp Paired End	(Sultan et al 2012)
Fetal liver (br.4)*	E12.5	F1 CAST/FVB	M+F	52,061,503	101bp Paired End	(Sultan et al 2012)
Fetal liver (br.5)	E12.5	FVB/N	M+F	67,562,979	101bp Paired End	ScriptSeq v1
Fetal liver (br.6)	E12.5	FVB/N	M+F	48,766,733	101bp Paired End	ScriptSeq v1
Cystic EBs (A9, br.1)	d10	C57BL/6 x 129	F	126,715,112	51bp Single End	ScriptSeq v1
Cystic EBs (JN, br.2)	d10	C57BL/6 x 129	М	61,201,370	101bp Paired End	(Sultan et al 2012)
Cystic EBs (A9, br.1)	d15	C57BL/6 x 129	F	122,826,880	51bp Single End	ScriptSeq v1
Cystic EBs (JN, br.2)	d15	C57BL/6 x 129	М	68,175,994	101bp Paired End	(Sultan et al 2012)
WGBS		Sample information				
Sample	Stage	Genotype	Sex	Seq. depth (reads)	Read type	Library prep. Method
Yolk sac endoderm	E12.5	CAST/EiJ x FVB/N	M+F	152,951,808	101bp Paired End	TruSeq v2
Yolk sac endoderm	E12.5	FVB/N x CAST/EiJ	M+F	56,573,815	101bp Paired End	TruSeq v2
Fetal liver	E12.5	CAST/EiJ x FVB/N	M+F	88,378,228	101bp Paired End	TruSeq v2
Fetal liver	E12.5	FVB/N x CAST/EiJ	M+F	87,382,218	101bp Paired End	TruSeq v2
Cystic EBs (CF-C2)	d15	CAST/EiJ x FVB/N	М	83,240,691	101bp Paired End	TruSeq v2
Cystic EBs (FC-A2)	d15	FVB/N x CAST/EiJ	М	41,643,829	101bp Paired End	TruSeq v2
ChIP-seq		Sample information				
Sample	Stage	Genotype	Sex	Seq. depth (reads)	Read type	Library prep. Method
VYS H3K4me3 ChIP	E12.5	FVB/N	M+F	13,858,725	51bp Single End	TruSeq ChIP
VYS input	E12.5	FVB/N	M+F	30,163,909	51bp Single End	TruSeq ChIP

Table S4. Samples sequenced by RNA-seq, WGBS and ChIP-seq.

Maternal allele written on left except for E12.5 ysE and fetal liver F1 CAST/FVB crosses for RNA-seq (*) where the direction of the cross is not indicated.

Sequences submitted to GEO (GSE56276) except for extra biological replicates (*) that will submitted together with a manuscript currently in preparation (DA & QJH et al) surveying imprinted expression in multiple tissues.

Key: Sample: br = biological replicate, ES cell clone name specified. Sex = male (M), female (F).