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Figure S1: Equilibria of 19-nt duplex mimics of a portion of the 39-nt hairpin with homodimers of the top strands of
their duplexes. (a) If residue 14 of a duplex is a uridine, as in the 39-mer, then a homodimer may form that is more
stable than the target heterodimer. (b) If residue 14 of a duplex is a cytidine, then the analogous homodimer is less
stable than the target heterodimer.
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Figure S2: Fragments of the 39-nt hairpin used for modeling with CS-ROSETTA."? (a) The 19-nt hairpin with the
A26 bulge and hairpin loop. (b) The 18-nt duplex with the 2 x 2 nt internal loop.
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Figure S3: Imino region of 1D proton spectra of the 39-nt hairpin acquired with 0, 5 and 10 mM Mg2+ at 4 °C.
These spectra were acquired on the 39-nt hairpin synthesized with commercial transcription kits and do not have a
signal for U39. " Chemical exchange peak.
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Figure S4: Imino to amino/non-exchangeable proton region of a 2D NOESY spectrum of the 39-nt hairpin. Cross-
peaks within base pairs from C amino proton(s) to GH1 and AH2 to UH3 are labeled blue, where the C amino
proton or AH2 and GHI or UH3 corresponds to the first and second residues, respectively. Interresidue H1' to
HI1/H3 cross-peaks are labeled green, where H1' and H1/H3 correspond to the first and second residues,

respectively. The A22H8-G19H1 and A31H2-G11HI1 cross-peaks are labeled red. The water signal was suppressed
with an S-pulse. The spectrum was acquired at —2 °C with 125 ms mixing time.

) ——C

3/



7.0

; :5.0
i
1d 52
3
g g/“‘n s
2l el .,,as%u@ -
3 56 2 S g :
o - ¢ ?—63467/6’/?’2:
5.8-i ; | Q@E“A"’ | 58
IE [) o -L @@ |
? 4 g ¢ \ _ A36/'?'
6.01 ©  A3H2A38 A9H2 A36H2[ 80
@ ‘ ' , . i
8.0 7.5 7.0
w, - H (ppm)
20
1 AGA
) 10 C A
i GGAUUUGCAG'GCCUAC\\ A
AEErrrr Trrl e €
3;J9AGACGUGAGGGUA

Figure S5: H1' to H6/H8 region of a 2D proton NOESY spectrum of the 39-nt hairpin showing sequential proton
walks for residues G2 to G10 and U33 to U39. H1' to H6/H8 walk NOEs are labeled blue for residues 2 to 10 and
green for residues 33 to 39. Adenine H2 signals are labeled with red dashed lines. H1' to adenine H2 NOEs are
labeled red with only the label of the residue for the H1'. Spectrum was acquired at 20 °C and 350 ms mixing time
with a WATERGATE pulse to suppress the water signal. In the secondary structure of the 39-nt hairpin., residues
whose intraresidue H1’ to H6/H8 NOEs were identified in the NOESY walks are labeled blue for residues 2 to 10
and green for residues 33 to 39.



Equilibrium of hairpin and duplex conformations.
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Calculate concentration of RNA in hairpin at 2 °C.

AHjirpin = —29.29 keal mol™ and ASy 4ipin = —92.99 cal mol™ - K™

AHgyplex = —39.27 kcal mol™* and ASyyjex = —121.03 cal mol™* - K2,

AG; = AG(})1:51irpin and AG; = _AG:iupleX'

The free energy change from hairpin to duplex at 2 °C follows. This calculation assumes
that all single strands form hairpin or duplex.

AG; + AG, + AG; =0

AG, = —2AG; — AGy

AG, = 1436.26 cal mol~!

AG. = —RTln <M>
2 [hairpin]?
o x/2

AGZ = —RTII’I <m>

Where x is the concentration of single-stranded RNA in duplex and Crt is the total
concentration of strands. The concentration of duplex and hairpin are x/2 and Ct — x,
respectively. The value of x at 2 °C, with Cr = 4 mM, is 2.31 x 10°° M. Therefore, the
concentration of hairpin is approximately 4 mM. At Cr = 0.2 mM, x is 5.78 x 10~ M.
Therefore, the concentration of hairpin is approximately 0.2 mM.

Figure S6: Thermodynamics calculations with the nearest neighbor model showing that the 11-nt hairpin
conformation is preferred to a duplex formed by self-dimerization of the RNA sequence.
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Figure S7: Imino proton region of the 11-nt hairpin at a strand concentration of 0.2 mM and 4 mM. The Mg”*
concentration was 0.25 mM and 5 mM for the 0.2 mM and 4 mM samples, respectively. The phosphates
concentration was the same in the two samples. Spectra were acquired with a 1-1-echo pulse at 2 °C.
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Figure S8: Imino region of 1D proton spectra of the 11-nt hairpin acquired with 0 and 5 mM Mg2+ at 5 °C.
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Figure S9: Imino region of 1D proton spectra of the 19-nt duplex acquired with 0 and 5 mM Mg*" at 5 °C. '

Chemical exchange peak.
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Figure S10: Differences in chemical shifts of select non-exchangeable hydrogens of the 11-nt hairpin with and
without 5 mM Mg®" at —2 °C. Residue numbers on the x-axis align with the middle of each set of two bars in each
plot.
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Figure S11: Differences in chemical shifts of select non-exchangeable hydrogens of the 19-nt duplex with and
without 5 mM Mg®" at —2 °C. Residue numbers on the x-axis align with the middle of each set of two bars in each
plot.
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Figure S12: The ensemble of the 10 structures of the 11-nt hairpin modeled in AMBER with the lowest distance
restraint violation energies and which agreed with NMR restraints.

Figure S13: The ensemble of the 10 structures of the 19-nt duplex modeled in AMBER with the lowest distance
restraint violation energies and which agreed with NMR restraints.
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Figure S14: Calculated structure of the hairpin loop of the 11-nt hairpin construct. (a) Model of the GAAA loop and closing AC pair of the 11-nt hairpin
construct calculated by AMBER, showing the 3" Aj; stack and an AC pair with a hydrogen bond from the C23 amino group to A18N1. (b) Space-filling model of
the A18-C23 pair. (c) Space-filling model of the G19-A22 pair.
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Figure S15: H1' to H2' region of a 2D TOCSY spectrum of the 11-nt hairpin. All visible cross-peaks are circled.
Cross-peaks circled blue correspond to H1' to H2' cross-peaks for residues labeled with the same color. Cross-peaks
circled orange are unassigned artifacts. As expected, the 3’ terminal A26 residue has a relatively large H1' to H2'
cross-peak. All H1' to H2' cross-peaks are small compared to C or U H5 to H6 cross-peaks in the same spectrum
(not shown), indicating weak coupling between these protons and that all residues primarily have a C3' endo sugar
pucker. The spectrum was acquired at 20 °C in D,0 and 5 mM Mg*".
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Figure S16: H1' to H2' region of a 2D TOCSY spectrum of the 19-nt duplex. All visible cross-peaks are circled.
Cross-peaks circled blue correspond to H1' to H2' cross-peaks for residues labeled with the same color. Cross-peaks
circled orange are unassigned artifacts. As expected, terminal residues have a relatively large H1' to H2' cross-peak.
All H1' to H2' cross-peaks are small compared to C or U H5 to H6 cross-peaks in the same spectrum (not shown),
indicating weak coupling between these protons and that all residues primarily have a C3’ endo sugar pucker. The
noise at 4.75 ppm is the residual water peak. The spectrum was acquired at 25 °C in D,0 and 5 mM Mg”".
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Figure S17: Calculated structure of the internal loop of the 19-nt duplex construct. (a) G10 is stacked below G11
with an anti conformation. (b) G10 flipped out of the helix with an anti conformation. (c) Space-filling model of
the G11-A31 pair.
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Figure S18: Chemical shift differences of the 19-nt duplex between experiment, assigned at 25 °C in the presence of
5 mM Mg*', and those predicted by NUCHEMICS for H2/H5, H6/HS8, H1' and H2' in an ensemble of 20 structures
generated with NMR restraints. Residue numbers on the x-axis align with the middle of each set of two bars in each
plot.
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Figure S19: Chemical shift differences of the 11-nt hairpin between experiment, assigned at 20 °C in the presence of
5 mM Mg*', and those predicted by NUCHEMICS for H2/H5, H6/HS8, H1' and H2' in an ensemble of 20 structures
generated with NMR restraints. Residue numbers on the x-axis align with the middle of each set of two bars in each
plot.
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Figure S20: Differences between experimental and NUCHEMICS-predicted chemical shifts of a GAAA hairpin,
closed by a GU pair, which consists of a helical region of a group II intron. Residue numbers on the x-axis align
with the middle of each set of two bars in each plot. Experimental chemical shifts were obtained from BMRB entry
15859 and 3D structures were obtained from PDB entry 2K66.”
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Figure S21: Differences between experimental and NUCHEMICS-predicted chemical shifts of a GAAA hairpin,
closed by a GC pair, which contains an internal loop from a ribozyme. Residue numbers on the x-axis align with the
middle of each set of two bars in each plot. Experimental chemical shifts were obtained from BMRB entry 17292
and 3D structures were obtained from PDB entry 2L5Z."
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Figure S22: Differences between experimental and NUCHEMICS-predicted chemical shifts of a GAAA hairpin,
closed by an AU pair, which consists of a helical region of a ribozyme. Residue numbers on the x-axis align with
the middle of each set of two bars in each plot. Experimental chemical shifts were obtained from BMRB entry
17877 and 3D structures were obtained from PDB entry 2LI14.”
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Figure S23: Differences between experimental chemical shifts of the 39-nt hairpin, assigned at 20 °C, and those
predicted by NUCHEMICS for H2/H5, H6/HS, H1' and H2' in an ensemble of 20 structures of the 19-nt hairpin
generated by CS-ROSETTA with chemical shift restraints. Bars colored with light shades belong to terminal helix
residues 12 and 30 of the 19-mer that are not at the termini of any helixes of the 39-mer, and thus are in structurally
inequivalent regions among the constructs. Residue numbers on the x-axis align with the middle of each set of two
bars in each plot.
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Figure S24: Differences between experimental chemical shifts of the 39-nt hairpin, assigned at 20 °C, and those
predicted by NUCHEMICS for H2/HS5, H6/H8, H1' and H2' in an ensemble of 20 structures of the 18-nt duplex
generated by CS-ROSETTA with chemical shift restraints. Bars colored with light shades belong to terminal helix
residues 7, 15, 27 and 35 of the 18-mer that are not at the termini of any helixes of the 39-mer, and thus are in
structurally inequivalent regions among the constructs. Residue numbers on the x-axis align with the middle of each
set of two bars in each plot.
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Figure S25: Secondary structure of a hairpin with a 2 x 2 internal loop from a group II intron of Oceanobacillus
iheyensis.’
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Table S1: Chemical shifts used to model fragments of the segment 7 hairpin with CS-ROSETTA. Chemical shifts
were taken from spectra of the 39-nt hairpin (red), 19-nt duplex (blue) and 11-nt hairpin (green) at 20 °C (39-nt
hairpin and 11-nt hairpin) or 25 °C (19-nt duplex) unless otherwise noted. The spectra for the 39-nt hairpin were
acquired with no Mg®" and those for the 19-nt duplex and 11-nt hairpin were acquired with 5 mM Mg*".

Residue  Atom sgi}}fr(r;;rﬂ) Residue  Atom sgj};fr(r;;:ﬁ) Residue  Atom Si?ff ?;;?111)
G7 H1' 5.681 C17 H2' 4.178 u27 H2' 4.401
G7 H2' 4.415 C17 H5 5.365 u27 H5 5.262
G7 H8 7.677 C17 Ho6 7.596 u27 H6 7.479
C8 H1’ 5.504 Al8 H1’ 5.980 G28 HI' 5.769
C8 H2’ 4316 Al8 H2 7.670 G28 H2' 4.719
C8 H3' 4.605 Al8 H2’ 4.474 G28 HS8 7.700
C8 H4' 4.461 Al8 H3' 4.848 G29 H1' 5.745
C8 H5 5.273 Al8 H8 8.184 G29 H2' 4.560
C8 H6 7.835 G19 H1' 5.563 G29 H3’ 4.504
A9 H1' 5.878 G19 H2' 4352 G29 H4' 4.507
A9 H2 7.198 G19 H3' 4.607 G29 H8 7.329
A9 H2' 4.491 G19 H4' 4.366 G30 H1’ 5.660
A9 H3’ 4.852 G19 HS8 7.335 G30 H2' 4.169
A9 H4' 4.391 A20 H1’ 5.681 G30 H3’ 4.647
A9 H8 8.045 A20 H2 7.726 G30 H4' 4.420
G10 H1’ 6.038 A20 H2’ 4.680 G30 HS8 7.264
G10 H2' 4.500 A20 H3’ 4.475 A31 HI' 6.104
G10 H3' 4716 A20 H4' 4.250 A31 H2 7.948
G10 H4' 4.491 A20 H8 8.210 A31 H2' 4.842
G10 H8 7.679 A21 H1' 5.515 A31 H3’ 4.678
Gl1 H1' 5.567 A21 H2 7.610 A31 H4' 4.480
Gl1 H2' 4.583 A21 H2' 4.558 A31 H8 8.078
Gl1 H3' 4.353 A21 H3' 4.655 G32 H1’ 5.370¢
Gl11 HS8 7.369¢ A21 H4' 4.410 G32 H2' 4.358
Cl12 H1’ 5.523 A21 HS8 7.888 G32 H3’ 4.229
Cl12 H2' 4.239 A22 H1’ 5.850 G32 H8 7.100
Cl12 H3’ 4451 A22 H2 8.082 U33 HI' 5.518
Cl12 H5 5.208 A22 H2' 4.675 U33 H2' 4.600
Cl12 H6 7.512 A22 H3’ 4.620 U33 H3’ 4.533
Cl13 H1' 5.367 A22 H4' 4.468 U33 H4' 4.422
Cl13 H2' 4.290 A22 H8 7.930 U33 H5 5.040
Cl13 H3' 4.485 C23 H1' 4.850 U33 H6 7.732
Cl13 H4' 4.363 C23 H2' 4414 G34 H1' 5.745
Cl13 H5 5.423 C23 H3' 4.338 G34 H2' 4.415
Cl13 H6 7.837 C23 H5 5.583 G34 H3’ 4.558
Ul4 H1’ 5.516 C23 H6 7.730 G34 H4' 4.435
Ul4 H2’ 4.252 G24 H1’ 5.528 G34 H8 7.693
Ul4 H5 5.736 G24 H2' 4.698 C35 H1’ 5.357
Ul4 H6 7.802 G24 H8 7.596 C35 H2' 4.303
Al5 H1’ 5.939 G25 H1' 5.640 C35 H3’ 4.370
Al5 H2 7.417 G25 H2' 4.391 C35 H4' 4.330
Al5 H2' 4.519 G25 H3' 4.564 C35 H5 5.170
Al5 H3' 4.613 G25 H8 7.307 C35 H6 7.438
Al5 H8 8.250 A26 H1' 5.924
Cle6 H1' 5.139 A26 H2 7.960
Cle6 H5 5.360 A26 H2' 4.387
Cl6 H6 7.421 A26 H8 8.036
Cl17 H1’ 5.302 u27 H1' 5.598

¢ Assigned at —2 °C.
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Table S2: Assigned chemical shifts of the 39-nt 3’ splice site segment 7 hairpin construct.
Residue HI’ H2 H2H5 HeHs  Himz  1121/41/61, H22/42/62

amino
G2 578 476 N/A 7.89 - -
A3 5.88 4.71 7.88 8.38 N/A -
U4 5.54 456 5.14 7.60 14.14 N/A
us 5.48 - 5.51 7.93 11.92 N/A
U6 547 456 5.53 7.94 13.51 N/A
G7 5.68 442 N/A 7.68 12.41 6.25
C8 5.32 5.17 7.61 N/A 8.28, 6.87
A9 578 447 7.06 7.90 N/A -
G10 5.88 - N/A 7.60 10.79¢ -
Gl11 5.51 458 N/A - 13.08 5.88
Cl12 5.52 426 5.13 7.50 N/A 8.42,6.98
Cl13 5.35 451 5.37 7.67 N/A 8.22,6.91
Ul4 5.52 425 574 7.80 11.66 N/A
Al5 594 452 742 8.25 N/A -
Cl6 5.14 - 5.36 7.42 N/A 8.10, 6.92°
C17 530 4.18 5.37 7.60 N/A 8.22,6.93
Al8 582 436 7.43 8.00 N/A -
G19 545 436 N/A 7.34 10.46 7.02
A20 5.67 462 7.78 8.16 N/A -
A21 5.57 455 1.73 7.96 N/A -
A22 5.81 4.64 - 7.98 N/A -
C23 - - 5.60 7.64 N/A -
G24 5.53 470 N/A 7.60 11.92 -
G25 5.64 439 N/A 7.31 12.41° -
A26 592 439 796 8.04 N/A -
u27 5.60 440 526 7.48 12.23 N/A
G28 577 472 N/A 7.70 10.30 6.30
G29 5.62 451 N/A 7.10 12.70 6.17°
G30 5.65 423 N/A 7.16 12.49 -
A31 6.06 4.86 - 8.03 N/A -
G32 - 437 N/A - 10.79¢ -
U33 549 460 4.99 7.68 13.39 N/A
G34 571 437 N/A 7.68 12.69/12.41¢ -
C35 532 436 5.19 7.61 N/A 8.31,6.86
A36 591 459 6.81 7.92 N/A -
G37 548 4.61 N/A 6.87 10.67 6.34
A38 5.89 434 7.88 7.71 N/A -
U39 571 410 5.08 7.45 13.66 N/A

Exchangeable proton chemical shifts were assigned in a —2 °C spectrum. Non-exchangeable proton chemical shifts
were assigned in a 20 °C spectrum. Exceptions are noted. “ Ambiguous. ” Assigned in a 20 °C spectrum. © Minor
conformation.
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Table S3: Assigned chemical shifts of the 11-nt hairpin construct.

H21/41/61,
Residue HI1' H2' H3' H4' HS5 H5” H2/H5 H6/H8 HI/H3 H22/42/62 P
amino
Cl6 5.62 450 446 440 412 394 6.04 8.13 N/A 8.55,7.10
C17 543 428 4.68 441 458 4.16 5.53 7.82 N/A 8.49,693 —4.10

Al 598 447 4385 - 452 418 7.67 8.18 N/A - -3.98
G19 556 435 461 437 442 411 N/A 7.34 10.49 7.16 —3.47
A20 568 4.68 448 425 426 395 1.73 8.21 N/A - —2.12
A21 552 456 4.66 441 430 4.02 7.61 7.89 N/A - -3.21
A22 585 4.68 4.62 447 458 421 8.08 7.93 N/A —4.16

C23 485 441 434 430" 436 4.13 558 7.73 N/A 7.72,6.58 —3.95

G24 559 472 433 - 425 410 N/A 7.58 11.97 587,739 —-3.56

G25 569 452 457 442 450 4.07 N/A 7.30 12.80 8.18 —4.07

A26 596 4.10 429 426 443 406 791 7.85 N/A - —3.86
Exchangeable proton chemical shifts were assigned in a —1 °C spectrum in H,O. Non-exchangeable proton
chemical shifts were assigned in a 20 °C spectrum in D,O. All chemical shifts were assigned in spectra obtained
with 5 mM Mg”*". Exceptions are noted. “ Assigned in a 20 °C spectrum without Mg2+.

Table S4: Assigned chemical shifts of the 19-nt duplex construct.

H21/41/61,
Residue H1' H2' H3' H4' H5 H5” H2/H5 H6/H8 HI/H3 H22/42/62 P
amino

G7 5.87 479 456 444 413 395 N/A 8.13 12.67 -

C8 5.50 432 4.61 446 - 4.17 527 7.84 N/A 8.54,6.82 —4.34
A9 5.88 449 485 439 - 4.19 7.20 8.05 N/A - —4.02
G10 6.04 450 472 4.49 - - N/A 7.68 10.86" -

Gl11 5.57 4.58 435 - - - N/A 7.37° 13.08 5.91 -3.93
Cl12 552 424 445 - - 4.10 5.21 7.51 N/A 8.47,7.06 —4.49
Cl13 537 429 449 436 - 405 542 7.84 N/A 8.42,696 —4.54
Cl4 541 432 447 434 - 405 543 7.64 N/A 8.25,6.97 —4.07
Al5 598 4.08 431 424 - 4.09 7.46 8.03 N/A - -3.94
u27 577 4.62 463 437 400 390 585 8.01 - N/A

G28 591 479 4.69 4.56 - - N/A 8.02 12.16 - -3.74
G29 575 456 450 451 451 414 N/A 7.33 12.81 i -3.69
G30 5.66 417 4.65 442 454 409 N/A 7.26 12.57 -

A31 6.10 484 468 448 - - 7.95 8.08 N/A -

G32 537" 436 4.23 - - - N/A 7.10 10.86" - -4.00
U33 552 460 453 442 - 4.09 5.04 7.73 13.31 N/A —4.85
G34 575 442 456 444 - 4.11 N/A 7.69 12.91 - —4.05
C35 536 430 437 433 - 4.04 5.17 7.44 N/A 8.07,6.91 —4.23
A36 597 403 427 421 440 4.03 741 8.01 N/A - -3.85

Exchangeable proton chemical shifts were assigned in a 0 °C spectrum in H,O. Non-exchangeable proton and
phosphorus chemical shifts were assigned in a 25 °C spectrum in D,O. All chemical shifts were assigned in spectra
obtained with 5 mM Mg®". Exceptions are noted. “ Ambiguous. ” Assigned in a —2 °C spectrum.
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Plasmid insert design for in vitro transcription of the 39-nt 3’ segment 7 mRNA hairpin by
T7 RNA polymerase

Cloning vector: pUC18 (Fermentas)

Intended sequence of the 39-nt RNA hairpin:
5'"GGAUUUGCAGGCCUACCAGAAACGGAUGGGAGUGCAGAUZ'

Sequence of the insert:
5"'GACGAAGCTTTAATACGACTCACTATAGGATTTGCAGGCCTACCAGAAACGGATGGGAGTGC
AGATATCGAATTCGAGC3'

Reverse complement of the insert:
5"'GCTCGAATTCGATATCTGCACTCCCATCCGTTTCTGGTAGGCCTGCAAATCCTATAGTGAGT
CGTATTAAAGCTTCGTC3'

Notation:

EcoR1 recognition sequence: 5' GAATTC3 '
EcoRV recognition sequence: 5' GATATC3'*
HindIII recognition sequence: 5 ' AAGCTT3'
RNA hairpin sequence

T7 RNA polymerase promoter

“ Bases that are part of the RNA hairpin sequence are labeled red.
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Distance restraints for AMBER modeling of 39-nt hairpin
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Distance restraints for AMBER modeling of 39-nt hairpin (continued)
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Distance restraints for AMBER modeling of 39-nt hairpin (continued)
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Distance restraints for AMBER modeling of 39-nt hairpin (continued)
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Distance restraints for AMBER modeling of 39-nt hairpin (continued)
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Dihedral restraints for AMBER modeling of 39-nt hairpin
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Dihedral restraints for AMBER modeling of 39-nt hairpin (continued)
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Distance restraints for AMBER modeling of 11-nt hairpin
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Distance restraints for AMBER modeling of 11-nt hairpin (continued)
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Dihedral restraints for AMBER modeling of 11-nt hairpin

17 CYT  ALPHA -155.0 25.0
18 ADE  ALPHA -155.0 25.0
17 CYT BETA 90.0 240.0
18 ADE BETA 90.0 240.0
17 YT  GAMMA 0.0 120.0
18 ADE  GAMMA 0.0 120.0
16 CYT DELTA 45.0 115.0
17 CYT  DELTA 45.0 115.0
18 ADE DELTA 45.0 115.0
23 CYT DELTA 45.0 115.0
26 ADE DELTA 45.0 115.0
16 CYT EPSILN -240.0 10.0
17 CYT EPSILN -240.0 10.0
16 CYT CHI 170.0 340.0
17 CYT CHI 170.0 340.0
18 ADE CHI 170.0 340.0
19 GUA CHI 170.0 340.0
20 ADE CHI 170.0 340.0
21 ADE CHI 170.0 340.0
22 ADE CHI 170.0 340.0
23 CYT CHI 170.0 340.0
24 GUA CHI 170.0 340.0
25 GUA CHI 170.0 340.0
26 ADE CHI 170.0 340.0
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Distance restraints for AMBER modeling of 19-nt duplex
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Distance restraints for AMBER modeling of 19-nt duplex (continued)
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Distance restraints for AMBER modeling of 19-nt duplex (continued)

assign (resid 15 and name H61 ) (resid 27 and name 04 ) 2.1 0.3 0.3
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Dihedral restraints for AMBER modeling of 19-nt duplex (continued)

8 CYT  ALPHA -155.0 25.0 7 GUA EPSILN -240.0 10.
9 ADE  ALPHA -155.0 25.0 8 CYT EPSILN -240.0 10.
13 CYT  ALPHA -155.0 25.0 12 CYT EPSILN -240.0 10.
14 CYT  ALPHA -155.0 25.0 13 CYT EPSILN -246.0 10.
15 ADE  ALPHA -155.0  25.0 14 CYT EPSILN -240.0 10.
28 GUA  ALPHA -155.0 25.0 27 URA EPSILN -240.0 10.
29 GUA  ALPHA -155.0 25.0 28 GUA EPSILN -240.0 10.
30 GUA ALPHA -155.0 25.0 29 GUA EPSILN -240.0 10.
34 GUA ALPHA -155.0 25.0 33 URA EPSILN -240.0 10.
35 CYT  ALPHA -155.0 25.0 34 GUA EPSILN -240.0 1e0.
36 ADE  ALPHA -155.0 25.0 35 CYT EPSILN -240.0 10.
8 CYT BETA 90.0 240.0 7 GUA ZETA -160.0  20.
9 ADE BETA 90.0 240.0 8 CYT ZETA -160.0  20.
13 CYT BETA 90.0 240.0 12 CYT ZETA -160.0  20.
14 CYT BETA 90.0 240.0 13 CYT ZETA -160.0  20.
15 ADE BETA 90.0 240.0 14 CYT ZETA -160.0  20.
28 GUA BETA 90.0 240.0 27 URA ZETA -160.0  20.
29 GUA BETA 90.0 240.0 28 GUA ZETA -160.0  20.
30 GUA BETA 90.0 240.0 29 GUA ZETA -160.0  20.
34 GUA BETA 90.0 240.0 33 URA ZETA -160.0  20.
35 CYT BETA 90.0 240.0 34 GUA ZETA -160.0  20.
36 ADE BETA 90.0 240.0 35 QYT ZETA -160.0  20.
7 GUA  GAMMA 0.0 120.0 7 GUA CHI 170.0 340.
8 CYT  GAMMA 0.0 120.0 8 CYT CHI 170.0 34e.
9 ADE  GAMMA 0.0 120.0 9 ADE CHI 170.0 34e0.
13 CYT  GAMMA 0.0 120.0 12 CYT CHI 170.0 340.
14 CYT  GAMMA 0.0 120.0 13 CYT CHI 170.0 34e0.
15 ADE  GAMMA 0.0 120.0 14 CYT CHI 170.0 34e.
27 URA GAMMA 0.0 120.0 15 ADE CHI 170.0 340.
28 GUA  GAMMA 0.0 120.0 27 URA CHI 170.0 34e0.
29 GUA  GAMMA 0.0 120.0 28 GUA CHI 170.0 34e0.
30 GUA GAMMA 0.0 120.0 29 GUA CHI 170.0 340.
34 GUA GAMMA 0.0 120.0 30 GUA CHI 170.0 34e0.
35 CYT  GAMMA 0.0 120.0 31 ADE CHI 170.0 340.
36 ADE  GAMMA 0.0 120.0 32 GUA CHI 170.0 340.
7 GUA DELTA 45.0 115.0 33 URA CHI 170.0 340.
8 CYT DELTA 45.0 115.0 34 GUA CHI 170.0 340.
9 ADE DELTA 45.0 115.0 35 CYT CHI 170.0 340.
10 GUA DELTA 45.0 115.0 36 ADE CHI 170.0 34e0.
11 GUA DELTA 45.0 115.0
12 CYT DELTA 45.0 115.0
13 C¢YT DELTA 45.0 115.0
14 CYT DELTA 45.0 115.0
15 ADE DELTA 45.0 115.0
27 URA DELTA 45.0 115.0
28 GUA DELTA 45.0 115.0
29 GUA DELTA 45.0 115.0
30 GUA DELTA 45.0 115.0
31 ADE DELTA 45.0 115.0
32 GUA DELTA 45.0 115.0
33 URA  DELTA 45.0 115.0
34 GUA DELTA 45.0 115.0
35 CYT DELTA 45.0 115.0

0 0

36 ADE DELTA

I
vl

115.
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