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Supplementary Figure 1: The high-order harmonic generation (HHG) power spectrum of Cs in 

the length (red dashed line) and acceleration (black solid line) forms driven by a mid-infrared 

3600-nm laser pulse. The red solid line indicates the corresponding ionization threshold marked 

by 𝐼𝑝. 

 

 

Supplementary Tables 
 

Supplementary Table 1: Comparison of the calculated atomic Cs energies with the experimental 

values (in a.u.). For each angular momentum 𝑙, two rows of energies 𝐸𝑛,𝑙 are listed: the first row 

refers to the calculated model-potential energies, and the second row refers to the experimental 

values1. 

 



 
 

Supplementary Methods 

 
1. Ab initio Simulation of the High-order Harmonic Generation Spectra of Cs 

 

    In the length gauge, the TDSE in the dipole approximation for an atom interacting with a laser 

field is given by, 
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where  �̂�(r, 𝑡) is the time-dependent atom-field interaction, and �̂�0 represents unperturbed atom 

Hamiltonian. �̂�0 is given as 
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where  𝑉𝑙 is the model potential of atomic Cs for each angular momentum 𝑙,  and 𝑌𝑙
0 is the spherical 

harmonic. 

To obtain the accurate calculation of the harmonic spectra of Cs, an angular-momentum-

dependent model potential is constructed as the following form: 
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where  α is the Cs+ core dipole polarizability, 𝑊6 is a core cutoff function 2,3 given by 
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and  𝑟𝑐 is an effective Cs+ core radius.  



In the present work we find it is sufficient to use two different angular-momentum-dependent 

model potentials, one for states with 𝑙 and another for states with 𝑙 ≥ 1. Supplementary Table I 

presents a comparison between the bound-state energies predicted by this model potential and the 

experimental values. The two values are in good agreement. 

The TDSE is solved accurately and efficiently by means of the time-dependent generalized 

pseudospectral method (TDGPS)4. Once the time-dependent wave function 𝜓(r, 𝑡) is available, 

we can calculate the expectation value of the induced dipole moment in the length and acceleration 

forms, respectively, 
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The high-order harmonic generation (HHG) power spectra in the length and acceleration forms 

can be obtained by the Fourier transformation of time-dependent dipole moment 𝑑𝐿(𝑡) and 𝑑𝐴(𝑡)2, 

respectively, 
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     Supplementary Figure 1 shows the length-form and acceleration-form HHG power spectrum of 

atomic Cs described by the angular-momentum-dependent model potential in mid-infrared laser 

field. In calculation, we adopt the same 3600-nm mid-infrared laser pulse with a cosine-squared 

shape profile, a duration of 20 optical cycles, and an intensity of 𝐼 = 1.4 × 1012 Wcm-2. In 

Supplementary Fig. 1 the whole range spectra of the length and acceleration forms are nearly 

identical. For each harmonic above the ionization threshold, both forms present the same detail 

structures. Beyond the cut-off region, while the length form spectrum levels off, the acceleration 

form spectrum reveals more harmonics. 

 

2. Synchrosqueezing Transform 

 
    We perform the time-frequency analysis on the induced dipole moment 𝑑(𝑥) of atomic Cs interacting 

with the applied laser field by means of the synchrosqueezing transform (SST)5-7.  The SST is described as: 
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where 𝑉(𝑡, 𝜔)  is the Morlet wavelet transform, Ω𝑓(𝑡, 𝜔)  is the reallocation rule function, and 𝛼  is a 

smoothing parameter. In this study, 𝛼 = 2.6. The Morlet wavelet transform is given as: 
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is the mother wavelet. The reallocation rule function is defined as: 

Ω𝑓(𝑡, 𝜔) = {
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where 𝜕𝑡 denotes the partial derivative in the temporal axis. 

    The time profile 𝑑𝜔𝑘
(𝑡𝑒)  for some harmonic 𝜔𝑘 from the SST analysis can be obtained from the 

reconstruction function: 

𝑑𝜔𝑘
(𝑡𝑒) = 𝔑𝑒 {𝑅𝑊

−1 ∫ 𝑆(𝑡, 𝜉)
1

√𝜔
d𝜔

𝜉2

𝜉1
} ,                                             (13) 

where (𝜉1, 𝜉2) is the neighborhood of such harmonic,  𝑅𝑊 = ∫
�̂�(𝜂)

𝜂
d𝜂   and  �̂�(𝜂) is the Fourier transform 

of 𝑊(𝜁), and 𝔑𝑒 denotes the real part.  
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