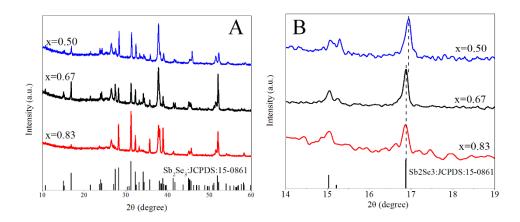
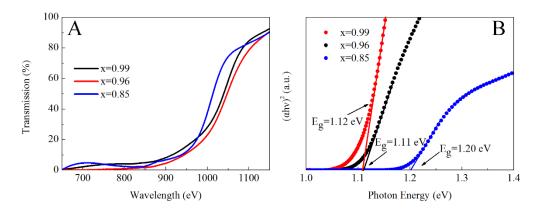
Supplementary Information


Hydrazine solution processed Sb₂S₃, Sb₂Se₃ and Sb₂(S_{1-x}Se_x)₃ film: molecular precursor identification, film fabrication and band gap tuning

Bo Yang^{1,2+}, Ding-Jiang Xue^{1,2+}, Meiying Leng^{1,2}, Jie Zhong^{1,2}, Liang Wang^{1,2}, Huaibing Song^{1,2}, Ying Zhou^{1,2}, Jiang Tang^{1,2*}


¹Wuhan National Laboratory for Optoelectronics (WNLO), and ² School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China ⁺These authors contribute equally to this work.

*Correspondence and requests for materials should be addressed to J. T. (E-mail:

jtang@mail.hust.edu.cn)

Figure S1 | A) From bottom to top, XRD patterns of the $Sb_2(S_{1-x}Se_x)_3$ ($0 \le x \le 1$) alloy films with their with their Se concentration in the precursor solutions indicated; B) (020) and (120) XRD peaks of the same films as in panel A.

Figure S2 | A) UV-vis-NIR transmission spectra of $Sb_2(S_{1-x}Se_x)_3$ ($0 \le x \le 1$) alloy films marked with their selenium concentration x of 0.99, 0.96, and 0.85, respectively. All of the samples were

annealed at 300 °C for 8 min. B) Pots of $(\alpha hv)^2$ vs the photon energy (hv) reveal the band-gaps of Sb₂(S_{1-x}Se_x)₃ (0 $\leq x \leq 1$) alloy films as 1.12, 1.11, and 1.10 eV for x = 0.99, 0.96, and 0.85, respectively;