
Supplemental Information  

Mathematical background 

We discretize the volume containing a macromolecule as having       voxels and model it as a N
3
-

dimensional random column vector X. A projection image from the data is modeled as a noisy 

approximation to the line integrals across the volume in a given direction, which we write 

    ,                                                                         (S1) 

where R contains the orientation-dependent coefficients in the line integrals. We also assume all 

projection orientations to be known. Since X is random, so is Y, and their respective covariance matrices 

   ( ) are related by  
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where    denotes the transpose of R.  The equation above can be re-written as a system of linear 

equations: 

                                                                          (S3) 

where    is the covariance of the line integrals (to be referred to as “2D covariance”) and     the 

unknown three-dimensional covariance (“3D covariance”), and the elements of   are products of 

elements of  . To see how Equation S2 reduces to Equation S3, note that the covariance between two 

linear combinations of random variables equals a linear combination of covariances, each of which is 

between a random variable from one combination and another random variable from the other 

combination. The coefficients in the newly formed linear combination are simply the products of the 

corresponding coefficients. Linearity between    and     has already been derived in (Katsevich, et al., 

2014).  

In practice, many projections exist, and one would therefore concatenate all these equations and solve the 

entire system. However, to reduce computational burden, the projections are grouped based on the 

similarity of their orientations; and one equation like Equation S3 is created for each of, say, J groups 

(hence one W is given for each group):  
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The aim now is to estimate the 3D covariance from the set of measured 2D covariances.   

To correct for noise, which is substantial in cryo-EM, we subtract the 2D covariance of a pure-noise 

projection (estimated by shifting the projection images by one-half of their size in both vertical and 



horizontal direction) from the corresponding measured 2D covariance. This is allowed under the 

assumption that the measurement noise and the structural heterogeneity of the macromolecules are 

statistically independent. Due to uneven ice thickness and uneven illumination, data are normalized to 

compensate for such data imperfections. Projection data are assumed to be correctly aligned and corrected 

for the CTF (Frank). Binning the orientations creates an unwanted variability, which nevertheless is 

considerably reduced by subtracting the reprojection of a volume reconstructed from the normalized 

projection data. Supplementary Figure S1 explains how we preprocess the data and compute the 2D 

covariance for each group (see also Section “Variability due to grouping of orientations” below).  

To solve the system of equations, we use an iterative algorithm known as block-Algebraic Reconstruction 

Technique (Herman, 1970; Censor & Zenios, 1997), with relaxation parameter =0.005 (note that this 

value depends on the entries in W). To speed up the convergence, we imposed at each iteration the 

condition for the solution to have the properties of a variance/covariance matrix: the variance must be 

non-negative, and the squared covariance must be no greater than the product of the corresponding 

variances. We found that usually twenty or fewer iterations are adequate to obtain a stable solution. 

Specifically, starting with an initial 3D covariance   
( )

, at the k-th iteration of our algorithm we compute 
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where  ̃      ( )     and impose the constraints  
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followed by these constraints 
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for          where sgn() is the sign function, and (  )    denotes the       element of the vector 

    for          

 

Variability due to grouping of orientations 

In this section we analyze the effect of the grouping/binning of orientations, which generates an additional 

unwanted variability in the covariance map. We show that the effect is lowered if we subtract the 

reprojection of the average structure from the projection data.  

We consider one row of Equation S1 in the noiseless case; i.e., 

    ∑                                                                             (S8)  

That is, y1 is a measurement of image y, which is a projection of a 3D structure x. Because of the 

structural heterogeneity, we write    ̅    , where  ̅   ( ) is the expected value of  . Because of the 



grouping of orientations, several projections of different but similar orientations are assigned to the same 

orientation. To reflect this fact, we write the coefficients ri as   ̅     , where   ̅  corresponds to the 

assigned orientation of the group. Thus, with consideration of variability in the orientation, a 

measurement becomes 

    ∑   (  ̅     )   ∑ [    ̅  (  ̅     )   ]  ∑ [    ̅    ̅          ] .               (S9) 

That is, the variability in    is created by the variability in each of the three terms inside the bracket of the 

right-most formula in (S9). Since the variability we want to see is the one coming from     and not    , 

the first and the last terms need to be removed -- note that the first term is in fact     ̅  (  ̅     )  ̅. The 

first term, however, is a reprojection of the average 3D structure, so it can be easily reproduced and 

subtracted. The second term is a reprojection (in the direction of the assigned orientation) of the average-

subtracted 3D structure, which is in line with our model assumption. Finally, the third term is a “residual” 

projection of the average-subtracted 3D structure.  

By removing the first term, we eliminate an important amount of variability due to orientation uncertainty, 

but not completely because of the third term. A precondition for our approach to work is, thus, that the 

bins must not be too large. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Figure S1 

Data preprocessing 

After normalizing the data by setting the background to zero mean and unit variance, we subtract from 

each projection the corresponding reprojection of a volume reconstructed from the normalized data. In the 

section “Variability due to grouping of orientations” above, we show that the removal of the reprojection 

helps remove the unwanted variability due to the slightly different orientations in a binned group. The 

projection binning/grouping comes in the next step, which is applied to both the projections after the 

reprojection removal and their shifted (by one-half of their size in both vertical and horizontal direction) 

version. The shifted version contains only noise. We estimate the 2D covariance for both versions and 

their difference is the final estimated 2D covariance.  

 

Figure S1. Estimation of the 2D covariance; related to Figure 1 

 

 

 

 



Supplemental Figure S2 

43S ribosomal pre-initiation complex with DHX29 bound 

 

 

Figure S2. 43S ribosomal pre-initiation complex with DHX29 bound; related to Experimental Procedures 

 

 

 

 

 

 



Supplemental Figure S3 

Solution domain of finer grid (mesh) 

 

Figure S3. Solution domain (mesh) for higher resolution (32
3
-voxel tessellation) estimation of the covariance. First, a low 

resolution (16
3
-voxel tessellation) estimation was calculated in the whole sphere inscribed in a cube of 16

3
 voxels. Next, 

regions of relatively high variance were determined and smoothed, yielding a new region that is used as a solution domain 
for higher resolution estimation; related to Experimental Procedures 

 

 

 


