Supplementary data

Complete *cis*-exclusion upon duplication of Eµ enhancer at the immunoglobulin heavy-chain locus

Nadine Puget, Claire Leduc, Zéliha Oruc, Mohammed Moutahir, Marc Le Bert and Ahmed Amine Khamlichi

Supplementary Results and Discussion

1- B cell development in the fetal liver, bone marrow and peripheral lymphoid organs.

The effect of premature expression of IgG3 on B cell development in various compartments of homozygous mice was analysed by FACS. In the bone marrow, we found a decrease in the $B220^+$ population. In contrast, in the spleen, the Peyer's patches, the peritoneum, and the fetal liver, the percentage of total $B220^+$ was slightly higher in A150 mice than in WT controls (Fig. S2A).

A striking and constant finding was that IgM-expressing B cells were barely detectable (<1%) in every compartment analysed in A150 mice, while IgG3-expressing B cells formed the vast majority of B cell populations (Fig. S2B-S2F). The lack of IgM expression was checked by using a polyclonal anti-IgM antibody or a mAb against the IgM^a allotype, since the mutant allele was derived from 129Sv1 mouse strain.

In the bone marrow, the pro-B cell compartment was slightly affected while pre-B cell population was clearly reduced. Similar ratios of pro-B and pre-B cell subsets were obtained by gating on IgM⁻ fraction for WT mice, on IgG3⁻ fraction for A150 mice, or on κ^- for both (Fig. S2G). Immature B cells (B220⁺AA4.1⁺ κ^+) were slightly decreased in A150 mice, while circulating B cells (B220⁺AA4.1⁻ κ^+) were increased (Fig. S2H).

The data show that premature expression of γ 3 heavy chain can drive B cell development in the bone marrow, with a decrease in pre-B cell population and to some extent immature B cell

population. Despite this impairment, IgG3-expressing B cells can populate the various lymphoid compartments. Importantly, the mutation leads to a complete absence of IgM-surface expression throughout B cell development.

In view of the above findings, together with the data reported in the main text regarding allelic exclusion, it is important to note that despite premature expression, $\gamma 3$ heavy chain was not as efficient as µ heavy chain in driving early B cell development. The B220⁺ population was decreased in the bone marrow which correlated with a markedly reduced pre-B cell compartment. While proper surface expression of the μ pre-BCR is required to deliver proliferative and survival signals that allow pre-B cells to mature to the next stage (1, 2), it is plausible that surface expression of the γ 3 pre-BCR is compromised (3). Additionally, there is evidence that proximal V_H-containing heavy chains do not efficiently pair with surrogate light chains (4), which may impact the pre-BCR function. In this regard, we cannot exclude the possibility that failure of proximal V_{H} -containing μ heavy chains to pair with surrogate light chains may contribute to *cis*-exclusion in A150 mice. Still, this alone does not explain why V(D)J rearrangements are restricted to proximal V_H segments (see discussion in the main text). Whether $\gamma 3$ and μ pre-BCRs share the same signalling pathway or whether they are equally efficient in mediating allelic exclusion is presently unknown. From our data that show that *prematurely* expressed γ 3 heavy chain can mediate an efficient allelic exclusion, it does not follow that γ 3 and μ pre-BCRs would be equally efficient when both the mutant and WT alleles have to undergo V(D)J recombination (3, 5). This would rather imply that μ pre-BCR is actually more powerful in a genuine allelic exclusion.

2- B cell development and homing to peripheral lymphoid organs

In the spleen, IgD was, just as IgM, undetectable in the mutant mice (Fig. S2I). In agreement with previous findings (3), the percentage of marginal zone (MZ) B cells was a ~2-fold higher in

A150, whereas the percentage of follicular (FO) B cells was essentially similar to WT controls (Fig. S2J).

In the peritoneum of mutant mice, the increase in B220⁺ fraction correlated with an increase in the B-2 population (B220⁺CD43⁻), while the B220⁺CD43⁺ fraction remained essentially unchanged (Fig. S2K, upper panels). Surprisingly, whereas B220⁺CD5⁺, B-1a cells, were abundant in the peritoneum of WT mice, they were very rare in that of A150 mice (Fig. S2K, lower panels). Accordingly, the percentage of IgG3⁺CD5⁺ cells in the peritoneum of A150 mice was less than 2% compared to ~20% of IgM⁺CD5⁺ (Fig. S2K). This contrasts with the situation in fetal liver where the two populations were comparable (Fig. S2L).

Thus, in the spleen, IgG3-expressing B cells preferentially home to the marginal zone. In stark contrast to WT, the mutant IgG3-expressing B-1a cells are very rare in the peritoneum, indicating that IgG3-expressing B cells do not develop peritoneal CD5⁺ cells. In contrast, they do so in the fetal liver, excluding the possibility that IgG3 and CD5 are incompatible with regard to surface expression.

3- Light chain expression under allelic inclusion, allelic exclusion and isotypic competition

The variable domains of γ 3 heavy chain (in A150) and μ heavy chain (in B1-8) preferentially pair with κ and λ light chains respectively, and are specific for HEL and NP respectively (6-8). In order to check whether γ 3 and μ heavy chains would compete for κ or λ light chains, and the potential effect of allelic inclusion on the κ/λ ratio, we looked at the surface expression pattern of κ/λ light chains. Strikingly, while B1-8/B1-8 B cells mainly expressed λ light chains, the vast majority of splenic B cells of other genotypes expressed κ light chains (Fig. S2M).

Remarkably, B cells that prematurely express IgG3 can out-compete IgM-expressing B cells in bone marrow of A150/WT mice (Fig. 1). The ratio is relatively more pronounced in the spleen where 76% of B cells express IgG3 only (Fig. S2N). In A150/B1-8 mice, where both isotypes are

prematurely expressed, the vast majority of B cells (94%) were allelically included and co-produced IgM and IgG3 in the spleen (Fig. S2N).

Thus, IgG3 and IgM can efficiently drive B cell development under allelic inclusion, and competition for κ light chain does not appear to be a limiting factor. Moreover, for allelically included isotypes, there is seemingly a selective advantage for κ -expressing cells.

4- The loss of IgG3 expression in A150 heterozygotes results from a deletional process

We considered a deletional process on the mutant allele that could be associated with either V(D)J recombination (because of early transcription of the ectopic J_{H3} and J_{H4} segments) or CSR (because of a fairly abundant transcription of Sµ and Sγ3). In both V(D)J recombination-, and CSR-associated deletions, different parts of the ectopic transcription unit should be lost. Accordingly, we designed different primers to distinguish between the two processes. Genomic DNA was extracted from sorted bone marrow IgM^{b+} and IgG3⁺ single-expressers, and assayed for V(D)J recombination and CSR.

The integrity of the inserted cassette was first checked and yielded the expected amplicons in the right genotypes (see IµF/3'SpeIR, IµF/3'SphIR, and I γ 3F/3'SphIR. Fig. S3A). Amplicons spanning the insertion site on the WT alleles (5'PmeIF/3'PmeIR) were, as expected, detected in both IgM⁺ and IgG3⁺ heterozygous populations, but not in homozygous A150 control (Fig. S3A). Crucially, by using a reverse primer that binds the 5' part of the ectopic sequence, the expected amplicon (5'PmeIF/3'loxPR) was readily detected in IgG3⁺ population, but was barely detectable in IgM⁺ population (Fig. S3A). A similar pattern was obtained by using primers that amplify the ectopic VDJ exon/intron (VDJ_{A150}F/5'J_H3R) (Fig. S3A). Quantification of the signals of 5'PmeIF/3'loxPR and VDJ_{A150}F/5'J_H3R amplicons indicated that the vast majority (>90%) of the signals disappeared from the mutant allele of IgM^{b+} population (Fig. S3A), indicating that the ectopic cassette was deleted in most of IgM^{b+} cells. If low levels of Sµ/S γ 3 CSR occurred on the mutant allele, then switch products might be amplified by DC-PCR. A very faint signal was detected in one IgG3⁺ population (Fig. S3B), and only upon a nested PCR. Assuming that it reflects genuine CSR events, a possible explanation is that it represents very rare CSR events that may have occurred after a (or some) productive V-DJ rearrangement(s) took place on the A150 allele. Compared to the control DC-PCR, a rough approximation would be that the percentage of switching alleles might not exceed 1% (Fig. S3B). We conclude that CSR is not the main process that mediates the loss of IgG3 expression in IgM^{b+} population. Nonetheless, even low levels of CSR on A150 allele may be sufficient to generate rare clones, which may be selected for further expansion. In support for the potential involvement of CSR, a low frequency of switch events was detected in the bone marrow (*e.g.* 9, 10) and some transformed pre-B cell lines can undergo CSR *in vitro* (11, 12).

A V(D)J recombination-associated deletion is expected to target either the ectopic J_{H3} or J_{H4} RSSs (hereafter called ectopic V(D)J recombination) (Fig. S3C, upper scheme). Therefore, with a primer that binds 5' of J_{H3} and a degenerate primer that binds the RSSs of most of D segments, one should detect DJ_{H1} and DJ_{H2} recombination on both alleles in the IgG3⁺ fraction. In contrast, one should expect a decrease of D-J_H recombination signal in IgM^{b+} fraction, since the only DJ_{H1} and DJ_{H2} amplicons will originate from the endogenous D-J_H cluster of the A150 allele (Fig. S3C, S4). That is indeed the case (Fig. S3C). Although this assay does not distinguish between recombined endogenous and ectopic J_{H3} and J_{H4} segments, the very low frequency of DJ_{H1} and DJ_{H2} recombination events in IgM^{b+} population (~6%) strongly suggests that ectopic D-J_H recombination is the major mechanism that led to the loss of A150 unit in the precursors of this population.

An accurate quantification of the contribution of each allelic configuration (Fig. S4) during ectopic V(D)J recombination in heterozygotes is difficult because the sorted populations have been selected at various checkpoints. We can only reconstruct the events that likely occurred in their precursors. A plausible scenario is that the A150 and WT alleles undergo D-J_H recombination in pro-B cells regardless of the J_H segments used on the A150 allele. V_H-DJ_H recombination may head first on one allele, and the outcome would depend on the correct reading-frame for feed-back inhibition. If this requirement is not fulfilled, the second allele then undergoes V_{H} -DJ_H recombination. In a fraction of the ~11% IgM^{b+} population, 40% and 24% of γ 3 heavy chain cDNAs containing proximal V_H and distal V_H segments, respectively, displayed correct readingframes on the A150 allele (Table S1). In another fraction of IgM^{b+} population, the ectopic transcription unit was intact as indicated by the presence of VDJ_{A150}-Cy3 transcripts. Our interpretation is that some of the γ 3 heavy chains did not pair with surrogate light chains, potentially leading to a situation where allelic exclusion was displayed at the protein level despite allelic inclusion at the genomic level (13). The other γ 3 heavy chains that paired with surrogate light chains may have done so in few clones which would give rise to double-expressers, and may be selected and expanded. This scenario does obviously not preclude the productive pairing of $\gamma 3$ heavy chains with light chains as a further checkpoint. In these scenari, we can not a priori exclude the possibility that surface expression of a subset of γ 3 pre-BCRs may be compromised and/or that they deliver a weak signal, which would enable a time window during which µ pre-BCRs would be expressed and deliver a stronger signal.

Overall, these interpretations would imply that IgM and IgG3 double-expression confers a selective advantage over single isotype expression. This may explain the relatively high percentage (\sim 7%) of IgM⁺IgG3⁺ double-expressers in the spleen. In support of this interpretation, we also found that the percentage of double expressers was very high in A150/B1-8 spleens.

5- The primary repertoire is not of fetal origin and out-of-frame V(D)J rearrangements are modestly increased

Proximal V_{H} -DJ_H recombination frequency was reduced in A150 pro-B cells. Still, this does not exclude the possibility that the residual recombined alleles may actually display a high proportion of unproductive rearrangements. Additionally, IgG3-expressing B cells were readily detected in the fetal liver, which hints to the possibility that the primary repertoire of the adult A150 mice may represent a vestige of the fetal repertoire. The terminal transferase is highly active in pro-B cells, but is barely detectable in fetal liver (14). Therefore, if the repertoire were of fetal origin, one would expect an absence or a drastic decrease in N-region addition. In an attempt to explore this issue, we cloned and sequenced 38 and 43 independent rearranged proximal V_HDJ_{H4} genes from sorted WT and A150 pro-B cells respectively. The junctional diversity flanking the rearranged D segments was used to check the clonality of the sequences.

While there was an overall balanced proportion of productive and non-productive rearrangements in WT controls (55% versus 45% respectively), we found a relative increase of non-productive rearrangements in A150 (61%) (Fig. S6 and Table S2). Inspection of the junction sequences showed no obvious difference between A150 mutants and WT controls. There was no evidence for over-representation of a D gene segment family in A150, nor an anomaly regarding the number of nucleotides inserted or deleted during V(D)J recombination (Fig. S6). We conclude that unproductive rearrangements modestly contribute to *cis*-exclusion of IgM, and that the primary repertoire of A150 mice is unlikely to be of fetal origin.

References associated with Supplementary Results.

1. **Melchers F**. 2005. The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nat Rev Immunol **5**:578-584.

2. Herzog S, Reth M, Jumaa H. 2009. Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol **9:**195-205.

3. Waisman A, Kraus M, Seagal J, Ghosh S, Melamed D, Song J, Sasaki Y, Classen S, Lutz C, Brombacher F, Nitschke L, Rajewsky K. 2007. IgG1 B cell receptor signaling is inhibited by CD22 and promotes the development of B cells whose survival is less dependent on Ig alpha/beta. J Exp Med 204:747-758.

4. Geier JK, Schlissel MS. 2006. Pre-BCR signals and the control of Ig gene rearrangements. Semin Immunol 18:31-39.

5. Duchez S, Amin R, Cogné N, Delpy L, Sirac C, Pascal V, Corthésy B, Cogné M. 2010. Premature replacement of mu with alpha immunoglobulin chains impairs lymphopoiesis and mucosal homing but promotes plasma cell maturation. Proc Natl Acad Sci USA **107**:3064-3069.

6. Aluvihare VR, Khamlichi AA, Williams GT, Adorini L, Neuberger MS. 1997. Acceleration of intracellular targeting of antigen by the B-cell antigen receptor: importance depends on the nature of the antigen-antibody interaction. EMBO J 16:3553-3562.

7. Sonoda E, Pewzner-Jung Y, Schwers S, Taki S, Jung S, Eilat D, Rajewsky K. 1997. B cell development under the condition of allelic inclusion. Immunity **6**:225-233.

8. **The YM, Neuberger MS**. 1997. The immunoglobulin (Ig)alpha and Igbeta cytoplasmic domains are independently sufficient to signal B cell maturation and activation in transgenic mice. J Exp Med **185**:1753-1758.

9. Edry E, Azulay-Debby H, Melamed D. 2008. TOLL-like receptor ligands stimulate aberrant class switch recombination in early B cell precursors. Int Immunol **20:**1575-1585.

10. Han JH, Akira S, Calame K, Beutler B, Selsing E, Imanishi-Kari T. 2007. Class switch recombination and somatic hypermutation in early mouse B cells are mediated by B cell and Toll-like receptors. Immunity **27:**64-75.

11. Alt FW, Rosenberg N, Casanova RJ, Thomas E, Baltimore D. 1982. Immunoglobulin heavy-chain expression and class switching in a murine leukaemia cell line. Nature **296**:325-331.

12. Burrows PD, Beck-Engeser GB, Wabl MR. 1983. Immunoglobulin heavy-chain class switching in a pre-B cell line is accompanied by DNA rearrangement. Nature **306**:243-246.

13. **ten Boekel E, Melchers F, Rolink AG**. 1998. Precursor B cells showing H chain allelic inclusion display allelic exclusion at the level of pre-B cell receptor surface expression. Immunity **8**:199-207.

14. Li YS, Hayakawa K, Hardy RR. 1993. The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J Exp Med **178**:951-960.

Supplementary Figure Legends

Figure S1. Replacement of I_γ3 region by a pre-rearranged V(D)J-Eµ cassette.

(A) Structure of the targeted $\gamma 3$ locus (not to scale): scheme of a WT allele showing an unrearranged *IgH* locus, and highlighting the Eµ enhancer, the I $\gamma 3$ GL promoter, S $\gamma 3$, C $\gamma 3$ and the 3'RR lying at ~150 kb downstream of the $\gamma 3$ region. (B) The structure of the targeting construct is shown. The *neo^r*-PVH-V(D)J-Eµ cassette was inserted into the ClaI site that replaced PmeI and SphI respectively. The two *lox*P sites are shown as triangles. The homologous recombination event leads to the replacement of the whole I $\gamma 3$ region. Ig sequences in the targeting vector and the recombinant ES clones are derived from the 129Sv1 mouse strain. (C) The structure of the floxed allele is shown as well as the position of the external 5' probe and the internal 3' probe. B: BamHI, C: ClaI, R: EcoRI, H: HindIII, P: PmeI, S: SphI, X: XhoI. (D) A Southern blot analysis of genomic DNA from WT and A150 mice. The digests used are indicated. The position of the probes is shown in (C).

Figure S2. FACS Analysis of B cell populations and Ig expression in B cell compartments.

(A). Total B cell populations. After removal of red blood cells, cells from the BM, spleen, PPs, peritoneum, and FL, were stained with anti-B220. Representative profiles from each compartment in WT and A150 mice are shown. Right panels: the histograms show the standard deviations. BM, n=5, p=0.0005; Spleen, n=6, p=0.0006; PPs, n=2, p=0.1; Peritoneum, n=2, p=0.02; FL, n=2, p=0.2 (pools of 3 embryos, each from a pregnant mouse (day 19 *p.c*), were used).

(**B-F**). **IgH expression in B cell compartments.** Single-cell suspensions from the BM (**B**), spleen (**C**), FL (**D**), PPs (**E**), and peritoneum (**F**), derived from WT and 150 mice, were labelled with anti-B220, anti-IgM and/or anti-IgG3, and gated on B220⁺ population. Representative dot plots showing essentially the absence of IgM- and the presence of IgG3-surface expression on A150 B cells are

shown, with the corresponding B cell compartments. BM, $n \ge 5$; Spleen, $n \ge 4$; FL, n=2 (pools of 3 embryos at day 19 *p.c* from 2 pregnant mice were used), PPs, n=2; Peritoneum, n=2.

(G, H). B cell subsets in the BM. (G) Single-cell suspensions from the BM of WT and A150 mice were stained with anti-B220 and anti-CD43. Representative plots and the corresponding histograms are shown on the right (n \geq 3). (H). Single-cell suspensions from the BM of WT and A150 mice were stained with anti-B220, anti-AA4.1, and anti- κ , and gated on B220⁺ population. Representative plots are shown on the left, and the corresponding histograms are shown on the right (n=3). (***, p<0.001; **, p<0.01; *, p<0.05; Data are presented ± SEM).

(I, J). IgH expression in the spleen. (I) After removal of red blood cells, single-cell suspensions were stained with anti-B220, and anti-IgM, or anti-IgD, or anti-IgG3. The histograms on the right panels show the standard deviations (n=5, p<0.0001 for IgM⁺ cells; n=2, p<0.0001 for IgD⁺ cells; n=5, p<0.0001 for IgG3⁺ cells). (J) To check for the ratio of MZ/FO B cells, splenic cells were stained with anti-B220, anti-CD21 and anti-CD23. Representative profiles, gated on B220⁺ population, are shown in the left panels (n=2, p=0.001 for MZ and p=0.02 for FO B cells).

(K, L). B cell populations in the peritoneum and fetal liver. (K) Peritoneal cells were stained with anti-B220 and anti-CD43 (upper plots), with anti-B220 and anti-CD5 (middle plots), or with anti-CD5 and anti-IgM, or anti-IgG3 (lower plots). The B-1a population was defined as $B220^+CD5^+CD43^{high}$, B-1b population as $B220^+CD5^{low}CD43^{low}$, and B-2 population as $B220^+CD5^-CD43^-$. Right panels: the histograms show the standard deviations (n=2, p=0.0005 for B-2 cells; p=0.002 for IgM⁺ B-1a cells, and p=0.01 for IgG3⁺ B-1a cells). (L) After removal of red blood cells, cells from the FL were stained with anti-B220 and anti-CD5. Representative profiles from WT and A150 mice are shown. Right panels: the histograms show the standard deviations n=2, p=0.2 (pools of 3 embryos, each from a pregnant mouse (day 19 *p.c*), were used).

(M). Analysis of surface expression of light chains in the spleen. After removal of red blood cells, splenocytes with the indicated genotypes were stained with anti-B220 and anti- κ and anti- λ , and gated on B220⁺ population. Representative plots are shown (n=2).

(N). Flow cytometric analyses of allelic exclusion, allelic inclusion and isotypic competition. (Upper panels) Single-cell suspensions from the spleens of mice with the indicated genotypes were stained with anti-B220 and mAbs against IgM^a and IgM^b allotypes, and gated on B220⁺ population. Representative plots are shown (n=5). (Lower panels) Cells from the spleens of mice with the indicated genotypes were stained with anti-B220, anti-IgM and anti-IgG3, and gated on B220⁺ population. Representative plots are shown (n=4).

Figure S3. PCR analysis of deletion events on the A150 allele in A150/WT mice.

(A). IgM⁺-only and IgG3⁺-only expressing B cells were sorted from the BM of A150/WT mice, and their genomic DNAs were extracted and subjected to PCR using appropriate primers. The relative localisation of the primers is indicated on the right of the corresponding panels. Genomic DNAs from WT and A150/A150 pre-B cells were used as controls. Representative results are shown with, below, the corresponding histograms (n=2, p=0.008 for IµF-3'SpeIR, p=0.76 for Iγ3F-3'SphIR, p=0.06 for IµF-3'SphIR, p=0.7 for 5'PmeIF-3'PmeIR, p<0.0001 for 5'PmeI-3'PmeIR, p<0.0001 for VDJ_{A150}F-5'J_H3R). (B). DC-PCR analysis of CSR events in IgM⁺ and IgG3⁺ populations. Genomic DNAs were extracted from the sorted BM populations, digested with EcoRI, and subjected to DC-PCR. The relative position of the primers is indicated in the top scheme. As a control, genomic DNA from a serial dilution of splenic B cells induced to switch to IgG3 was assayed by using the same primers. The percentage of switched B cells was determined by FACS (n=2). (C). Detection of ectopic V(D)J recombination. Genomic DNAs from the sorted populations were assayed for D-J_H recombination by using a forward primer (top scheme) that binds RSSs of

the vast majority of D segments and a backward primer that binds upstream of both the endogenous and the ectopic J_{H3} (n=2, p<0.0001).

Figure S4. Possible configurations of A150 and WT alleles and expected transcripts in IgM^{b+} and IgG3⁺ populations.

The A150 and WT alleles in their un-rearranged configuration are shown on the top. For simplicity, a single V_H , D or J_H segment is shown. Possible V_H -DJ_H rearrangements in IgM^{b+} and IgG3⁺ populations and the corresponding transcripts are indicated. The transcripts that potentially produce μ or γ 3 heavy chains are underlined. Assumptions underlying some configurations and the likely order of rearrangements are reported below each scheme (see paragraph 4 of Supplementary results for more details).

Figure S5. Sequences of the VDJ-Cγ3 cDNAs from sorted IgM^{b+} and IgG3⁺ A150/WT bone marrow B cells.

IgM^{b+}-only and IgG3⁺-only expressing B cells were sorted from the bone marrow of A150/WT mice. Total RNAs were extracted and reverse transcribed. Single-stranded cDNAs were subjected to PCR using a primer that binds either the proximal V_{H7183} , or the distal V_{HJ558} gene segment family, and a reverse primer that binds C γ 3-1 exon. Non-productive sequences are further divided into those with out-of-frame rearrangements, and those with premature stop codons (underlined) within the rearranged D-J_H sequences. The correct reading-frame resulting from J_{H3}-C γ 3 or J_{H4}-C γ 3 splicing is shown below the alignments. The C γ 3-1 exon sequence is indicated in bold.

Figure S6. Sequences of the V_H-D-J_H4 junctions from WT and A150/A150 pro-B cells.

The sequences were amplified by using a primer that binds the proximal V_{H7183} gene-family segments, and one primer that binds 3' of J_{H4} segment. The junctional diversity was used to check

for the clonality of the sequences. 38 and 43 sequences were obtained from sorted WT and A150 pro-B cells respectively. Non-productive sequences are further divided in those with out-of-frame rearrangements, and those with premature stop codons (in italics).

Supplementary Materials and Methods

Gene targeting. For A150 targeting construct, a ~2.6 kb PmeI-SphI fragment spanning Iy3 promoter/exon, and ending at ~250 bp downstream of the Iy3 exon was replaced by a ~5 kb fragment containing a pre-rearranged V(D)J gene and Eµ enhancer. The PmeI and SphI sites were first modified into ClaI site in a pBluescript II KS⁻ (Stratagene) vector containing a ~8 kb XhoI-BamHI fragment spanning Iy3 and Sy3 sequences. The PVH-V(D)J-Eµ sequence was derived from pYMT8 (1) as a SpeI fragment and cloned into the unique SpeI site of a vector downstream of a *neo^r* cassette flanked by two *loxP* sites. The HSV *tk* gene was inserted into XhoI site. The ES cell line CK35 (129Sv1) (kindly provided by C. Kress, Institut Pasteur, Paris) was transfected by electroporation, and selected using G418 (300 µg/ml) and gancyclovir (2 µM). Recombinant clones were identified by PCR and Southern blot analysis after an EcoRI digest, with an external 5' probe (a 1.0 kb EcoRI-XhoI fragment), or after a BamHI digest, with an internal 3' probe (a 2 kb HindIII-BamHI fragment downstream of Sy3 region). Two ES clones showing homologous recombination were injected into C57B1/6 blastocysts, the male chimeras were then mated with C57B1/6 females. Germ-line transmission of the mutation was checked by PCR and Southern blot after EcoRI or BamHI digests and using the external or internal probes. Homozygous N/N mutant mice were mated with EIIa-cre transgenic mice. The progeny was checked by PCR and Southern blot for Cremediated deletion neo^r by using the same digests and probes. Additional checks were made by sequencing pertinent regions in the genomic DNA of splenic B cells from *neo^r*-deleted mice.

Flow cytometry analyses. Lymphoid organs from 6- to 8-week-old mice were prepared by standard techniques. After disaggregation, washing, and removal of red blood cells, 5×10^5 cells/assay were stained and gated as indicated in the figure legends. Fetal livers were pooled from embryos at day 19 *post-coitum*, and treated as above. Data were obtained on 2.0 x 10^4 viable cells

by using a BD FACSCalibur. In all FACS acquisitions, dead cells were excluded by labelling with propidium iodide.

Antibodies. PE-conjugated anti-IgM^b, FITC-conjugated anti-IgM^a, FITC-conjugated anti-IgG3, PEand FITC-conjugated anti-CD43, PE-conjugated anti-κ, FITC-conjugated anti-λ, PE-conjugated anti-CD5, PE-conjugated anti-CD4, FITC-conjugated anti-CD8, PE-conjugated anti-AA4.1, FITCconjugated anti-κ, were purchased from BD-Pharmingen. PE- and APC-conjugated anti-B220, FITC- and PE-conjugated anti-IgM, APC-conjugated anti-CD21, FITC-conjugated anti-CD23 were from BioLegend. PE-conjugated anti-IgD was from Southern Biotech.

Sequencing of V(D)J amplicons. Genomic DNAs from sorted pro-B cells were amplified by using a degenerate primer that binds the proximal V_{H7183} gene segment family and a primer 3' of J_{H4} . Bands corresponding to $V_{H}(D)J_{H1}$ rearrangements were purified and cloned into pCR2.1-TOPO (InVitrogen) for sequencing.

Sequencing of V(D)J-C γ 3 cDNAs. Single-cell suspensions from the bone marrows of A150/WT mice were stained with anti-B220, anti-IgM^b, and anti-IgG3. IgM^{b+} and IgG3⁺ single-expressers were sorted, and total RNAs were extracted and reverse transcribed. PCRs were performed by using a degenerate primer that binds the proximal V_{H7183} or the distal V_{HJ558} gene segment families, and a reverse primer that binds C γ 3-1 exon. Amplicons were purified and cloned into pCR2.1-TOPO (InVitrogen) for sequencing.

DC-PCR. Splenic B cells were purified by using CD43-beads (Miltenyi) and cultured in the presence of 20 μ g/ml LPS (Sigma) and 3 ng/ml anti-IgD-dextran (Fina Biosolutions). At day 4, genomic DNA was extracted and assayed by DC-PCR essentially as described (2).

References associated with Supplementary Materials and Methods

1. **The YM, Neuberger MS**. 1997. The immunoglobulin (Ig)alpha and Igbeta cytoplasmic domains are independently sufficient to signal B cell maturation and activation in transgenic mice. J Exp Med **185**:1753-1758.

2. **Chu CC, Paul WE, Max EE**. 1992. Quantitation of immunoglobulin mu-gamma 1 heavy chain switch region recombination by a digestion-circularization polymerase chain reaction method. Proc Natl Acad Sci USA **89:**6978-6982.

Supplementary tables

\mathbf{IgM}^+ population	Productive	Non- productive	Number of sequences	J _{H3} usage	J _{H4} usage
Proximal V_{H}	17 (40%)	25 (60%)	42 (100%)	13	29
Distal V _H	9 (24%)	29 (76%)	38 (100%)	18	20
IgG3 ⁺ population	Productive	Non- productive	Number of sequences	J _{H3} usage	J _{H4} usage
Proximal V _H	40 (95%)	2 (5%)	42 (100%)	12	30
Distal V _H	42 (98%)	1 (2%)	43 (100%)	5	38

Table S1. Productive versus non-productive rearrangements in sorted A150/WT bone marrow B cells.

Ratios of productive/non-productive proximal and distal VDJ-C γ 3 cDNA sequences in sorted IgM⁺ and IgG3⁺ heterozygous B cells from A150/WT mice. IgM⁺-only and IgG3⁺-only cells were sorted from the bone marrow of A150/WT mice. Total RNAs were extracted, reverse transcribed and subjected to PCR using a primer that binds either the proximal V_{H7183}, or the distal V_{H3558} gene segment family, and a reverse primer that binds 5' of C γ 3.

Table S2. Amplified joints $(V_{H7183}DJ_{H4})$ from sorted pro-B cells.

Genotype	In frame sequences	Out of frame sequences	Total number of sequences
WT	21 (55%)	17 (45%)	38 (100%)
A150/A150	17 (39%)	26 (61%)	43 (100%)

Ratios of productive/non-productive proximal V_{H} -D-J_H rearrangements in sorted pro-B cells from WT and homozygous A150 mice. Genomic DNAs were prepared from sorted pro-B cells and subjected to PCR using a degenerate primer that binds the proximal V_{H7183} genes family and a primer that binds 3' of J_{H4} segment.

Primer	Sequence (5' to 3')	Tm (°C)	Reference
V(D)J rearrangen	<u>ient assays :</u>		
D _H Q52-Fw	CCACAGGCTCGAGAACTTTAGCG	60	Perlot <i>et al.</i> (2005)
D _H L-Fw	TTTTTGTCAAGGGATCTACTACTGTG	60	Perlot <i>et al.</i> (2005)
V _H 7183-Fw	GCGAAGCTTGTGGAGTCTGGGGGGAGGCTTA	63	Perlot <i>et al.</i> (2005)
V _H Q52-Fw	GCGAAGCTTCTCACAGAGCCTGTCCATCAC	60	Perlot <i>et al.</i> (2005)
V _H Gam3.8	CAAGGGACGGTTTGCCTTCTCTTTGGAA	60	Fuxa <i>et al.</i> (2004)
V _H J558	GCGAAGCTTARGCCTGGGRCTTCAGTGAAG	60	Perlot <i>et al.</i> (2005)
J _H 4-Rev	CCTAAAGGCTCTGAGATCCCTAGACAG	60-63	Puget et al. (2014)
VKDEG-Fw	GGCTGCAGSTTCAGTGGCAGTGGRTCWGGRAC	60	Dudley et al. (2003)
Jĸ5.1-Rev	GAACTGACTTTAACTCCTAACATGAAAACC	60	Dudley et al. (2003)
HS4-Fw	CCAAAAATGGCCAGGCCTAGG	60	Perlot <i>et al.</i> (2005)
HS4-Rev	AGGTCTACACAGGGGGCTCTG	60	Perlot <i>et al.</i> (2005)
Transcription Analy	sis / Q-PCR and RT-PCR assays :		
µ0-Fw	GGTGAGTCCTGCATCTGGGG	60	This study
Iµ-Fw	CTCTGGCCCTGCTTATTGTTG	60	Haddad et al. (2011)
Cµ-Rev	GAAGACATTTGGGAAGGACTGACT	60-62	Haddad et al. (2011)
Iγ3-Fw	TGGGCAAGTGGATCTGAACAC	60	Haddad et al. (2011)
Cy3-Rev	CTCAGGGAAGTAGCCTTTGACA	60-62	Haddad et al. (2011)
VDJ _{A150} -Fw	CCAGAGAGAGAGATTATAGGCTTGACTAC	60	This study
AS _{DSP} -Fw	ACTTGGCAGGGATTTTTGTC	60	Guo et al. (2011)
AS _{DSP} -Rev	TGAAGAGTCTGCTGGGCATA	60	Guo et al. (2011)
pV _H 7183 GLT-Fw	ATGGACTTCGGGCTCAGCTTG	60	Guo et al. (2011)
pV _H 7183 GLT-Rev	GATGCTCTGCAGGAGGTTTT	60	Guo et al. (2011)
dV _H J558 GLT-Fw	ATGGGATGGAGCTGGATCTT	60	Guo et al. (2011)
dV _H J558 GLT-Rev	CTCAGGATGTGGTTACAACACTGTG	60	Perlot et al. (2005)
AS J558 5'int-Fw	ATTCCCCTCCCAATAGGAAA	60	Bolland et al. (2004)
AS J558 5'int-Rev	TGTCAATCACAATGGGCATC	60	Bolland et al. (2004)
AS PAIR4-Fw	ATGGGGCACATAGGTTCTTCC	64	Puget et al. (2014)
AS PAIR4-Rev	GGACATCTGAGAGATCATTGAACATC	64	Puget et al. (2014)

 Table S3. Oligonucleotides used in this study.

Primer	Sequence (5' to 3')	Tm (°C)	Reference
L-VDJ _H -Fw	GCAACAGCTACAGGTGTCCACTCCC	60	This study
pV _H 7183-Fw	GCGAAGCTTGTGGAGTCTGGGGGGAGGCTTA	60	Perlot <i>et al.</i> (2005)
dV _H J558-Fw	GCGAAGCTTARGCCTGGGRCTTCAGTGAAG	60	Perlot <i>et al.</i> (2005)
$D_{\rm H}F$	TTTTTGTSAAGGGATCTACTACTGTG	62	Puget et al. (2014)
Actin 4-Fw	CTGACAGACTACCTCATGAAGATCC	60	Puget et al. (2014)
Actin 5-Rev	CATGGATGCCACAGGATTCC	60	Puget et al. (2014)
GAPDH-Fw	GGTGAAGGTCGGTGTGAACG	60/64	Puget et al. (2014)
GAPDH-Rev	CTCGCTCCTGGAAGATGGTG	60/64	Puget et al. (2014)
YWHAZ-Fw	AGATGAAGCAGAAGCAGGAGAAG	60/64	Puget et al. (2014)
YWHAZ-Rev	CAGCATGGATGACAAATGGTCAC	60/64	Puget et al. (2014)
Analysis of deletion	n events on the A150 allele :		
Iµ F	CTCTGGCCCTGCTTATTGTTG	60	Haddad et al. (2011)
3'SpeI R	CATGAGCTCTATGATTATTGGTTAACAGGCAAC	60	This study
Ιγ3 F	TGGGCAAGTGGATCTGAACAC	60	Haddad et al. (2011)
3'SphI R	GCTCTCCTGTGGCTGCTCAACTTGG	60	This study
5'PmeI F	AGAAGTGTGTGTGGTCATCAAAGC	60	This study
3'PmeI R	AATTACATACTTTCAGCATTCAATGATACTG	60	This study
3'LoxP R	CTTGGCTGGACGTAAACTCCTC	60	This study
VDJ _{A150} F	CCAGAGAGAGAGATTATAGGCTTGACTAC	60	This study
$D_{\rm H}F$	TTTTTGTSAAGGGATCTACTACTGTG	62	Puget et al. (2014)
5'J _H 3 R	CAGATGGAGGCCAGTGAGGG	60/62	This study
DC-PCR assays :			
5'Sµ R	CATGAGCTCTATGATTATTGGTTAACAGGCAAC	63	This study
3'Sγ3 F	TTGTCAATTCTTGATCTTACAGCACAAAGGG	63	This study
Nested 3'Sy3 F	ACTCCCTGGGTCGAGAATATACAAGCC	63	This study
nAChRe-Fw	CGGTCGACAGGCGCGCACTGACACCACTAAG	63	Chu et al. (1992)
nAChRe-Rev	GCGCCATCGATGGACTGCTGTGGGTTTCACCCAG	63	Chu et al. (1992)

References associated with Table S3:

Bolland DJ, Wood AL, Johnston CM, Bunting SF, Morgan G, Chakalova L, Fraser PJ, Corcoran AE. 2004. Antisense intergenic transcription in V(D)J recombination. Nat Immunol **5:**630-637.

Chu CC, Paul WE, Max EE. 1992. Quantitation of immunoglobulin mu-gamma 1 heavy chain switch region recombination by a digestion-circularization polymerase chain reaction method. Proc Natl Acad Sci USA **89:**6978-6982.

Dudley DD, Sekiguchi J, Zhu C, Sadofsky MJ, Whitlow S, DeVido J, Monroe RJ, Bassing CH, Alt FW. 2003. Impaired V(D)J recombination and lymphocyte development in core RAG1expressing mice. J Exp Med **198**:1439-1450.

Fuxa M, Skok J, Souabni A, Salvagiotto G, Roldan E, Busslinger M. 2004. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes & Dev **18:**411-422.

Guo C, Yoon HS, Franklin A, Jain S, Ebert A, Cheng HL, Hansen E, Despo O, Bossen C, Vettermann C, Bates JG, Richards N, Myers D, Patel H, Gallagher M, Schlissel MS, Murre C, Busslinger M, Giallourakis CC, Alt FW. 2011. CTCF-binding elements mediate control of V(D)J recombination. Nature 477:424-430.

Haddad D, Oruc Z, Puget N, Laviolette-Malirat N, Philippe M, Carrion C, Le Bert M, Khamlichi AA. 2011. Sense transcription through the S region is essential for immunoglobulin class switch recombination. EMBO J **30**:1608-1620.

Perlot T, Alt FW, Bassing CH, Suh H, Pinaud E. 2005. Elucidation of IgH intronic enhancer functions via germ-line deletion. Proc Natl Acad Sci USA **102**:14362-14367.

Puget N, Hirasawa R, Nguyen Hu NS, Laviolette-Malirat N, Feil R, Khamlichi AA. 2015. Insertion of an imprinted insulator into the IgH locus reveals developmentally regulated, transcription-dependent control of V(D)J recombination. Mol Cell Biol **35**:529-543.

Bone Marrow

<u>Spleen</u>

Μ

<u>Spleen</u>

Ν

<u>Spleen</u>

В

* V-DJ rearrangements on the A150 allele occur first, but could be:

1) non-productive,

2) productive but γ3 heavy chains do not pair with surrogate light chains/light chains

3) productive and γ 3 heavy chains pair with light chains, *en route* to double expression.

* V-DJ rearrangements on the WT allele occur first, but may be:

1) non-productive,

2) productive but μ heavy chains do not pair with surrogate light chains/light chains,

3) productive and μ heavy chains pair with light chains, *en route* to double expression.

Sequences of the VDJ-Cγ3 cDNAs from sorted A150/WT BM B cells.

A. <u>Amplified joints (pV_H7183-D-J_H3) from sorted IgMb⁺ cells</u>

Seq n°	V _H gene segment	N and P nucleotide additions	J _H 3 segment
GL	tac tgt gca aga		cc tgg ttt gct tac tgg ggc caa
In fran	<u>ие (4)</u>		
a02	tac tgt gca aga	cag ggg tcg g	cc tgg ttt gct tac tgg ggc caa
a09	tac tgt gca aga	ccc ccc tcc tac tat agg tac gac gta c	gg ttt gct tac tgg ggc caa
c09	tac tgt gca aga	cct ccc tac tat gat tac gac gac gcg cct ct	g ttt gct tac tgg ggc caa
c11	tac tgt gca aga	ccg cct act atg gta act c	cc tgg ttt gct tac tgg ggc caa
Out of	<u>frame (6)</u>		
a07	tac tgt gca aga	gac ata ggt acg ccg	gtt tgc tta ctg ggg cca agg
b08	tac tgt	acc agg ctc cca act ggg acc c	gt ttg ctt act ggg gcc aag
c05	tac tgt gtg aga	cat agc tgc tcg atg gtt act gac ggg	ggt ttg ctt act ggg gcc aag
c10	tac tgt gca aga	ggt ggg cc	t ttg ctt act ggg gcc aag
d03	tac tgt gtg aga	gat gat tat tac tac ggt agt agc tac tct	cct ggt ttg ctt act ggg gcc aag
d09	tac tgt gca aga	ccc ccc ttt act ata ggt acg ccc	cct ggt ttg ctt act ggg gcc aag
Prema	ture stop codon (3)		
a08	tac tgt gca aga	gat gca <u>tga</u>	
b05	tac t	tt gca aga caa cgg <u>tag</u>	
c07	tac	ggg <u>tag</u>	

$J_H 3-C\gamma 3$

ce tgg ttt get tae tgg gge caa ggg act etg gte act gte tet gea get aca aca aca gee eea tet gte tat eee ttg gte eet gge tge agt gae aca tet gga tee teg gtg aca etg gga tge ett gte aaa gge tae tte eet gag ...

B. <u>Amplified joints (pV_H7183-D-J_H4) from sorted IgMb⁺ cells</u>

Seq n° V_H gene segment

N and P nucleotide additions

ccc ttt gat ggc ggt

acc agg ccg aga aga tta cga cgg gg

aag cct act ata ggt acg acc ttc

ag tat tac tac ggc tac g

agg cct act ata ggc ac

cat aga acg atc cga tgg tta ccc gca t

ta acg gta gtc agt tt

ggg tct acc ggg

g cga tct act atg att acc tca t

gtg ggg gt

gac gcc cga ctg gga cg

ggt aac tcg cca

gat aag gct atg att acg tac ggc ct

cat cct act atg atg gtc cc

acc agg gtt atg att acg acg aga ggg gac

cat ggg gat ggt aac cc

gac gcc cga ctg gga cg

aa gat ccc ccc atc tac tat gat tac gag cc

tg aag tat ggt aac tac ctt a

cca tac cct

J_H4 segment

GL ...tac tgt gca aga

at tac tat gct atg gac tac tgg ggt...

In frame (13) a03 ...tac tgt gca aga

a04 ...tac tgt a10 ... tac b06 ...tac tgt gca aga b07 ...tac tgt gca a b10 ...tac tgt gca a c03 ...tac tgt gca aga c12 ...tac tgt gca aga d01 ...tac tgt g d04 ...tac tgt g d07 ...tac tgt gca aga d10 ...tac tgt gca ag d11 ...tac tgt gtg aga

Out of frame (8)

a05 ...tac tgt gca aga a06 ... tac tgt gca aga b02 ...tac tgt gca aga b03 ...tac tgt gca aga c02 ...tac tgt gca aga c06 ...tac tgt gca aga c08 ...tac tgt d06 ... tac tgt gca aga

Premature stop codon (7)

a01	tac <u>tga</u>	(ata ggt)
b01	tac tg	g gcc cta <u>tga</u>
b11	tac tgt gca aga	gat ata cgt cta cta
b12	tac	ggg cta <u>tga</u>
c01	tac tgt gca ag	c ccc cca <u>tag</u>
d02	tac tgt gca aga	gat ata cgt cta cta
d08	tac tgt gca aga	cga agg ctt cta

a <u>tag</u> <u>tag</u>

$J_{\rm H}4$ -C $\gamma 3$

at cat tat get atg gac tac tgg ggt caa gga ace tea gte ace gte tee tea get aca aca aca gee eca tet gte tat ece ttg gte eet ggc tgc agt gac aca tct gga tcc tcg gtg aca ctg gga tgc ctt gtc aaa ggc tac ttc cct gag

<u>tag</u>

- tgg ggt... t tac tat gct atg gac tac tgg ggt... tat gct atg gac tac tgg ggt... tat gct atg gac tac tgg ggt... c tat gct atg gac tac tgg ggt... ac tat gct atg gac tac tgg ggt... g gac tac tgg ggt... at tac tat gct atg gac tac tgg ggt ... ac tgg ggt... c tat gct atg gac tac tgg ggt... gct atg gac tac tgg ggt...
- at tac tat gct atg gac tac tgg ggt... t atg gac tac tgg ggt...
- t act atg cta tgg act act agg gtc... tgc tat gga cta ctg ggg tca... t atg cta tgg act act ggg gtc...cag **cta**.... a ctg ggg tca... t act atg cta tgg act act ggg gtc... cta tgc tat gga cta ctg ggg tca...
- t atg cta tgg act act ggg gtc...

C. <u>Amplified joints $(dV_{HJ558}$ -D-J_H3)</u> from sorted IgMb⁺ cells

Seq n°	$\mathbf{V}_{\mathbf{H}}$ gene segment	N and P nucleotide additions	J _H 3 segment
GL	tac tgt gca aga		cc tgg ttt gct tac tgg ggc caa
<u>In fran</u>	<u>ne (4)</u>		
e08	tac tgt gca aga	tcg gta ccg ggc ggg g	gg ggc caa
f10	tac tgt gca aga	gag aat ggt tac ccc c	tt gct tac tgg ggc caa
h01	ttc tgt gca aga	gaa gaa gga tta cgg cc	g ttt gct tac tgg ggc caa
h05	tat tgt gca aga	gag ggg ggt atc t	cc tgg ttt gct tac tgg ggc caa
Out of	<u>frame (6)</u>		
e02	tac tgt aca aga	cgg ggt aac tac gtc	gtt tgc tta ctg ggg cca agg
f12	tac tgt aca aga	cgg gga tta cgg gg	c ctg gtt tgc tta ctg ggg cca agg
g03	tac tgt gca aga	ggg ggt act acg gta ccc t	gg gcc aag
f03	tac tgt gca	cgc tcc tcc gtc tat gat tac gg	g ctt act ggg gcc aag
g10	tac tgt gca aga	gaa ggg act atg gag gct g	tg ggg cca agg
<u>e06</u>	tac tgt gca aga	gaa ggg gat ggt aac ag	c ctg gtt tgc tta ctg ggg cca agg
<u>Prema</u>	<u>ture stop codon (7)</u>		
e11	tac tgt gca aga	tgg gga cta <u>tag</u>	
g05	tac tgt gca ag	t gga cta <u>tag</u>	
e04	ttc tgt gca aga	ggg ggc cta <u>tga</u>	
f09	tat tgt gca aga	<u>tag</u>	
g04	ttc tgt gca aga	tgg <u>taa</u>	
g07	tac tgt gca a	ct <u>tga</u>	
h11	tac tgt gca aga	ggg tac tac ggt agt agc <u>taa</u>	
<u>Pseudo</u>	ogenes (1)		

$J_H 3-C\gamma 3$

f07

cc tgg ttt gct tac tgg ggc caa ggg act ctg gtc act gtc tct gca gct aca aca aca gcc cca tct gtc tat ccc ttg gtc cct ggc tgc agt gac aca tct gga tcc tcg gtg aca ctg gga tgc ctt gtc aaa ggc tac ttc cct gag ...

D. <u>Amplified joints (dV_HJ558-D-J_H4) from sorted IgMb⁺ cells</u>

Seq 1	$^{\circ}$ V _H gene segment	N and P nucleotide additions	J _H 4 segment
GL	tac tgt gca aga		at tac tat gct atg gac tac tgg ggt
In fra	ame (5)		
e10	tac tgt gca ag	g ggg gga tgg tta tt	t gct atg gac tac tgg ggt
f04	tac tgg gca	tta cta cgg cta cgt gag aga gat tat agg ctt	gac tac tgg ggc
g08	tac tgt gca aga	tgt ggg ggt aac tac cca caa gtg gga cta	tac tat gct atg gac tac tgg ggt
h03	tac tgt gca	tgg cgg act ata ggt acg acg gga gac cct	tat gct atg gac tac tgg ggt
h08	gac act gca	gtc tcc ttc ata ggt at	c tat gct atg gac tac tgg ggt
Out d	<u>of frame (8)</u>		
e03	tac tgt gca aga	tgg gcc tac tat ggt aac tac gag ggt tt	a tta cta tgc tat gga cta ctg ggg
e05	tct gcg gcc agg	cct act ata aac ccg	act ggg gtc
f01	tac tgt gca aga	gga agg ggc att ccc t	ct atg cta tgg act act ggg gtc
f08	tac tgt gca a	ct ggg aaa cgg g	ct atg cta tgg act act ggg gtc
g06	tac tgt gca aga	tct aac tgg gag ggc att t	ta tgc tat gga cta ctg ggg tca
g11	tac tgt gca aga	ggt ggt tac tac tct atg	cta tgg act act ggg gtc
g12	tac tgt gca aga	gag gag gca ccg ggg	cta tgc tat gga cta ctg ggg tca
h02	tac	tac ggt acc cc	t act atg cta tgg act act ggg gtc
<u>Pren</u>	nature stop codon (5)		
e01	tac tgt gca	ggt ata cta <u>tag</u>	
e09	tac tgt gca aga	agg <u>tag</u>	

e09...tac tgt gca agaf06...tac tgt gcaf11...ttc tgt gca agah07... tac tgt

<u>Pseudogenes (2)</u> h04 h05

J_H4-Сү3

at cat tat get atg gac tac tgg ggt caa gga acc tca gtc acc gtc tcc tca g**ct aca aca aca gcc cca tct gtc tat ccc ttg gtc cct ggc tgc agt gac aca tct gga tcc tcg gtg aca ctg gga tgc ctt gtc aaa ggc tac ttc cct gag**

gaa gat tta cta cgg <u>tag</u>

caa <u>tga</u>

act cga tgg <u>taa</u>

E. <u>Amplified joints $(pV_{\underline{H}}^{7183}-D-J_{\underline{H}}^{3})$ from sorted IgG3⁺ cells</u>

Seq n° V_H gene segment	N and P nucleotide additions	J _H 3 segment
GLtac tgt gca aga		cc tgg ttt gct tac tgg ggc caa
<u>In frame (11)</u>		
a04tac tgt	acg gat gta aga ggg aag g	tt gct tac tgg ggc caa
b12 tac tgt gca aga	gag gat gat tac gcc ca	g ttt gct tac tgg ggc caa
c04 tac tgt gca aga	ggg ggc cat gat ggt tac tac tcc	ttt gct tac tgg ggc caa
c05 tac tgt gca aga	cat gtg atg gtt act acg g	cc tgg ttt gct tac tgg ggc caa
c06 tac tgt gca aga	cat gga cct cc	g ttt gct tac tgg ggc caa
c10tac tgt gca aga	cat agc g	gg ttt gct tac tgg ggc caa
d04 tac tgt gtg aga	caa agc agt t	cc tgg ttt gct tac tgg ggc caa
d05 tac tgt gca aga	cat gag ggg ggt tac t	cc tgg ttt gct tac tgg ggc caa
d07 tac tgt gca aga	gga gga caa ctg gga agg tcg g	cc tgg ttt gct tac tgg ggc caa
d08 tac tgt gtg aga	gag ggt ggt aac tac ggg aaa gga g	cc tgg ttt gct tac tgg ggc caa
d09 tac tgt gca aga	cat aac tac ggt agt agc tac	ttt get tac tgg ggc caa
Premature stop codon (1)		
c07 tac tgt gca ag	g tat <u>tga</u>	

$J_H 3$ -C $\gamma 3$

cc tgg ttt gct tac tgg ggc caa ggg act ctg gtc act gtc tct gca gct aca aca aca gcc cca tct gtc tat ccc ttg gtc cct ggc tgc agt gac aca tct gga tcc tcg gtg aca ctg gga tgc ctt gtc aaa ggc tac ttc cct gag ...

F. <u>Amplified joints $(pV_{H}7183-D-J_{H}4)$ from sorted IgG3⁺ cells</u>

Seq n	° V _H gene segment	N and P nucleotide additions	J _H 4 segment
GL	tac tgt gca aga		at tac tat gct atg gac tac tgg ggt
<u>In fra</u>	<u>me (29)</u>		
a01	tac tgt gca a	cc ctc ccc tca tta cta cgg ccc tta t	at tac tat gct atg gac tac tgg ggt
a02	tac tgt gca aga	agc gga cgt g	at gct atg gac tac tgg ggt
a03	tat tgt agt aga	tcc tgg gcg agg g	at gct atg gac tac tgg ggt
a06	tac tgt gca aga	tca agg acc ccc c	ac tat gct atg gac tac tgg ggt
a07	tac tgt gca aga	cat ggg ggg gta cca tgg	gct atg gac tac tgg ggt
a09	tac tgt gca aga	ggg ggg tac gac g	at gct atg gac tac tgg ggt
a10	tac tgt gca aga	cat cag gct atg att acc tca t	at tac tat gct atg gac tac tgg ggt
a11	tac tgt gca aga	cat gac tcc tgg gcc	tac tat gct atg gac tac tgg ggt
b01	tac tgt gca aga	gat aag gaa a	at tac tat gct atg gac tac tgg ggt
b02	tac tgt gca aga	gaa ggg gtt acg aca ggg g	at tac tat gct atg gac tac tgg ggt
b03	tac tgt gca aga	tee tee eec tae ega ggg tae tte gat gte	tgg ggc
b04	tac tgt gca aga	cat gcg gac tac ggt agt agc ccc tgg	gct atg gac tac tgg ggt
b05	tac tgt gca aga	caa ggg ggg gat ctc tat gat ggt tac tac a	at gct atg gac tac tgg ggt
b06	tac tgt gca aga	caa gag gga ccc tc	t tac tat gct atg gac tac tgg ggt
b07	tac tgt gca aga	gaa tcg g	ac tat gct atg gac tac tgg ggt
b08	tac tgt gca aga	ggc cgg ggg t	tg gac tac tgg ggt
b09	tac tgt gca aga	gtt tat tac tac ggt agt gag	gct atg gac tac tgg ggt
b10	tac tgt gca ag	g ggg gtc tac tat ggt tac gac gaa gag a	at gct atg gac tac tgg ggt
b11	tac tgt gca aga	gaa ggg gtt acg aca ggg g	at tac tat gct atg gac tac tgg ggt
c02	tac tgt gca aga	ggg gca aac tgg gac tac ttt	gac tac tgg ggc
c03	tac tgt gca ag	c ctt tgg ccc t	ct atg gac tac tgg ggt
c08	tac tgt gca aga	cat gaa ggg ggt aag gag ggg aaa atg	gct atg gac tac tgg ggt
c09	tac tgt gca aga	ggg aaa ctg gga gag ct	t gct atg gac tac tgg ggt
c12	tac tgt gca aga	acc ctc tac ctc	tac tat gct atg gac tac tgg ggt
d01	tac tgt gca aga	gaa aac tat agg	tat gct atg gac tac tgg ggt
d02	tac tgt gca ag	c tct atg att acg ac	t tac tat gct atg gac tac tgg ggt
d03	tac tgt gca aga	cag agc tg	c tat gct atg gac tac tgg ggt
d06	tac tgt gca aga	gat cga ggt aat gg	t gct atg gac tac tgg ggt
d12	tac tgt aca aga	gga ctg gcg	tac tat gct atg gac tac tgg ggt
Prem	ature stop codon (1)		

c11 ... tac tat gct a

tg gac tac <u>tag</u>

$J_H 4$ -C $\gamma 3$

at cat tat get atg gac tac tgg ggt caa gga acc tea gte acc gte tee tea g**ct aca aca aca gee cea tet gte tat ece ttg gte ect** gge tge agt gac aca tet gga tee teg gga tge ett gte aaa gge tae tte ett gag

G. <u>Amplified joints $(dV_H J558-D-J_H 3)$ from sorted IgG3⁺ cells</u>

Seq r	$\mathbf{N}^{\circ} \mathbf{V}_{\mathbf{H}}$ gene segment	N and P nucleotide additions	J _H 3 segment
GL	tac tgt gca aga		cc tgg ttt gct tac tgg ggc caa
<u>In fra</u>	<u>ume (5)</u>		
e11	tac tgt gca aga	gac ctt	ttt gct tac tgg ggc caa
f06	tac tgt aca aga	gat acg atg atg gtt act g	cc tgg ttt gct tac tgg ggc caa
f10	ttc tgt gct aga	gtg agg gac tac tat gat tac gac ggc	ttt gtt tac tgg ggc caa
f11	tac tgt gc	g cta ggg ggg acc cct ctt	ttt gct tac tgg ggc caa
h09	tac tgt aca aga	tcg gct atg gta act acg ttg g	cc tgg ttt gct tac tgg ggc caa

$J_H 3-C\gamma 3$

ce tgg ttt get tae tgg gge caa ggg act etg gte act gte tet gea get aca aca aca gee eea tet gte tat eee ttg gte eet gge tge agt gae aca tet gga tee teg gtg aca etg gga tge ett gte aaa gge tae tte eet gag ...

H. <u>Amplified joints (dV_HJ558-D-J_H4) from sorted IgG3⁺ cells</u>

Seq n° V_H gene segment

N and P nucleotide additions

J_H4 segment

GL ...tac tgt gca aga

<u>In frame (37)</u>

e01 ...tac tgt gca aga e02 ...tat tgt gca aga e03 ... ttc tgt gca aga e05 ...tac tgt gca aga e06 ... tac tgt gga aga e07 ... ttc tgt gca aga e08 ... tac tgt aca aga e09 ... tac tgt gca ag e10 ... ttc tgt gca aga e12 ...tac tgt aca aga f01 ...tac tgt gca aga f03 ... ttc tgt gc f04 ... tac tgt gca ag f05 ... tac tgt aca aga f08 ... tac tgt gca aga f09 ...tac tgt gca aga g01 ...tac tgt gca ag g02 ...tac tgt gca aga g03 ...tat tgt gca aga g04 ... ttc tgt gca aga g05 ...tac tgt aca aga g06 ...tac tgt gca aga g07 ...tac tgt aca aga g08 ...tac tgt gca aga g09 ...tac tgt gca a g10 ...tac tgt gca aga g11 ...tac tgt gca a g12 ...tac tgt gca aga h02 ...tac tgt gca aga h03 ...tac tgt gca aga h05 ...tac tgt gca aga h06 ... tac tgt aca ag h07 ...tac tgt gca aga h08 ...tac tgt gca aga h10 ...tac tgt gca aga h11 ...tac tgt gca aga h12 ... ttc tgt gca aga

gcc tgg gac g agg aat agt aac tac ttt acg gt agc tat ggt a agg gac tgg gac gt tcc ggc gct agg act g gac tat agg tac gac gaa t g gag atg gta act gag gtt t gga cgg ccg tgg gga ctg gga ggg gat t ggg agg act acg c tgt tac tac gac tat c g ccg atc tat gat ggt tac ccc tt gcg gaa ctg ggc ct cat ggt aac t gcc cct tac tac ggt cat t g ggg gtg gga cga cgg gat t agg aca ggt ct tca ggg tat ggt aac tac gta a ggg gga cag gg tcc ctc ggg gcg g atg gga gta tgg g gtt aac tgg gac gag acc tcc ct ta ggt acg acg agg g ggg act atg gta act cct ta ggt acg caa ctg ggt t ggc ggt tta cta cgg cta c tcg gag ggt ata ggt acg acg tgg ggt ggg acg gct ggg acc cct t tct atg gta act acg tt gga gct atg atg gtt acc ccc ttg ggg gga gaa ggt t atc ccg ccg ggt t ggg cct agt atg gta acc cct t tct ccc tat gat t

at tac tat gct atg gac tac tgg ggt...

ac tat gct atg gac tac tgg ggt... tat gct atg gac tac tgg ggt... t tac tat gct atg gac tac tgg ggt... ac tat gct atg gac tac tgg ggt... t gct atg gac tac tgg ggt... at gct atg gac tac tgg ggt... ac tat gct atg gac tac tgg ggt... ac tat gct atg gac tac tgg ggt... tat gct atg gac tac tgg ggt... ac tat gct atg gac tac tgg ggt... gct atg gac tac tgg ggt... ct atg gac tac tgg ggt... t gct atg gac tac tgg ggt... c tat gct atg gac tac tgg ggt... ac tat gct atg gac tac tgg ggt... ac tat gct atg gac tac tgg ggt... ac tat gct atg gac tac tgg ggt... c tat gct atg gac tac tgg ggt... at gct atg gac tac tgg ggt ... c tat gct atg gac tac tgg ggt... ac tat gct atg gac tac tgg ggt... ac tat gct atg gac tac tgg ggt... gct atg gac tac tgg ggt... c tat gct atg gac tac tgg ggt... ac tat gct atg gac tac tgg ggt... tat gct atg gac tac tgg ggt... gct atg gac tac tgg ggt... ac tat gct atg gac tac tgg ggt... ac tat gct atg gac tac tgg ggt... gct atg gac tac tgg ggt... tat gct atg gac tac tgg ggt... t gct atg gac tac tgg ggt... gct atg gac tac tgg ggt... ac tat gct atg gac tac tgg ggt...

<u>Pseudogene (1)</u>

f07

 $J_H 4-C\gamma 3$

at cat tat get atg gac tac tgg ggt caa gga acc tca gtc acc gtc tcc tca get aca aca aca gec cca tct gtc tat cec ttg gtc cct ggc tgc agt gac aca tct gga tcc tcg gtg aca ctg gga tgc ctt gtc aaa ggc tac ttc cct gag

tta cta tgc tat gga cta ctg ggg tca...

tt act atg cta tgg act act ggg gtc...

tta cta tgc tat gga cta ctg ggg tca...

att act atg cta tgg act act ggg gtc...

cta tgc tat gga cta ctg ggg tca...

g cta tgg act act ggg gtc...

tat gga cta ctg ggg tca...

tgg act act ggg gtc...

Sequences of the V_H -D-J_H4 junctions from WT and A150 Pro-B cells.

A. <u>Amplified joints (V_H7183-D-J_H4) from WT Pro-B cells</u>

Seq n°	V _H gene segment	N and P nucleotide additions	J _H 4 segment
GL	tac tgt gca aga		at tac tat gct atg gac tac tgg ggt
<u>In fran</u>	ne (21)		
01	tac tgt gca aga	cat gaa gag	atg gac tac tgg ggt
02	tac tgt	acc agg agg gcc ccc gcc tac tat agg tac gac gg	c tat gct atg gac tac tgg ggt
03	tac tgt gca aga	cat agg tct acg gag	gct atg gac tac tgg ggt
04	tac tgt gca aga	cat caa agg ccc ttc att act acg gct acg gga cca tt	t a ac tat gct atg gac tac tgg ggt
05	tac tgt gca aga	cat cag gat tac ctc gcc aa	t tac tat gct atg gac tac tgg ggt
07	tac tgt gca aga	gat ccc tcc ttc tac tat gat tac gac ggg	tac tat gct atg gac tac tgg ggt
10	tac tgt gca aga	cat cga att act acc c	ct atg gac tac tgg ggt
17	tac tgt	acc agg cca agg ggg gac tac ggc tgg g	ac tat gct atg gac tac tgg ggt
18	tac tgt gca aga	ccg ggg gcg ag	c tac tgg ggt
19	tac tgt	acc agg tgt ggt tac ctc tca t	at tac tat gct atg gac tac tgg ggt
21	tac tgt gca aga	cat age eee cae tae tat ggt aac tae gg	t get atg gae tae tgg ggt
22	tac tgt gca aga	gag gac tat gaa acg t	ct atg gac tac tgg ggt
23	tac tgt gca aga	gat gca tgg ggt tac tac g	at gct atg gac tac tgg ggt
24	tac tgt gca aga	gat agg gga tta cta cgg cta cgt gag g	tg gac tac tgg ggt
29	tac tgt gca aga	ccc ttt att act acg gta gta gcg	tac tat gct atg gac tac tgg ggt
35	tac tgt	aca att tat ggt aac tac cgt	tat gct atg gac tac tgg ggt
37	tac tgt gca aga	cgc ggt g	ac tat gct atg gac tac tgg ggt
39	tac tgt gca aga	cat ggg aac tat agg tac gac aga gg	c tat gct atg gac tac tgg ggt
40	cac tgt gca aga	gga att act acg gta gta gag g	at gct atg gac tac tgg ggt
42	tac tgt gca aga	gat cgc tat ggt aaa aag ggg gtc cta t	ct atg gac tac tgg ggt
43	tac tgt gca aga	cat gaa gag	atg gac tac tgg ggt
Out of	frame (12)		
08	tac tgt gca aga	aaa ggg ggt aac tac tct	att act atg cta tgg act act ggg gtc
14	tac tgt gca aga	cta tgg tta cga ccg g	ta tgc tat gga cta ctg ggg tca
15	tac tgt gca aga	gaa cac cct ctc cct cta cta tgg tta cga cga gg	a cta tgc tat gga cta ctg ggg tca
27	tac tgt gca aga	cat agt ggt acg acg ccg ggg	act atg cta tgg act act agg gtc

cat agt ggt acg acg ccg ggg aa cct cga tgg cag gta acc ctc ta acc cgg gg cgg atc tat agg tac gac gct aa acc tcg atg g cat gcc tac tat ggt aac ggt gaa ggc aga cag ctc ggg ccc gcc cgt tat ggt aac tac gat

33 ...tac tgt gca aga 36 ...tac tgt gca a ... tac tgt gca aga 45 ...tac tgt gca aga 46 ...tac tgt gca aga Premature stop codon (5) 09 ...tac tgt gca ag

...tac tgt gca a

...tac tgt g

...tac tgt gca aga

30

31

32

41

12	tac tgt gca aga	
13	tac tgt gca aga	
26	tac tgt gca aga	
44	tac tgt gca aga	

g cta cta tag aga cta tgg taa cat tag cga gga cta tag gat gtc cta cta tag

B. <u>Amplified joints (V_H7183-D-J_H4) from A150 Pro-B cells</u>

Seq n° V_H gene segment N and P nucleotide additions

GL ...tac tgt gca aga

In frame (17)

03	tac tgt ac	g ggg ggt aac ctc t	at tac tat gct atg gac
05	tac tgt aca aga	cac ggg ggt aac tac gtc ggg	tat gct atg gac
06	tac tgt	acg acc ctc tac ggt agt agc cct aag gcc t	ct atg gac
07	tac tgt gca aga	cat tcc ccc tat ggc cct g	ac tat gct atg gac
12	tac tgt gca aga	cat tcc tac tat ggt aac tac g	at tac tat gct atg gac
13	tac tgt gca ag	g gcc tac tat ggt aaa gg	t gct atg gac
15	tac tgt	ata gct acg tgg aga	gct atg gac
19	tac tgt gca a	cc tat gat ggt tac cc	c tat gct atg gac
20	tac tgt gca ag	c aac tac ggt agt agc tac cta	tat gct atg gac
23	ttc tgt tca aga	ggc tat ggt aac	tac tat gct atg gac t
25	tac tgt gca aga	cgg atc tat gat ggt tac tac gtg gga act tc	t tac tat gct atg gac
26	tac tgt gca aga	aaa ctg ggc cgg ggt t	at tac tat gct atg gac
28	tac tgt gca ag	g gat atg gat tact ac ggt agt agc tac ggc gg	t tac tat gct atg gac
31	tac tgt gc	c gta gta acc atc a	at gct atg gac
35	tac tgt gca ag	t gag ggg gat ggt tac cc	c tat gct atg gac
39	tac tgt gca aga	aaa ctg ggc cgg ggt t	at tac tat gct atg gac
48	tac tgt gca ag	g att act acg gta gta gag agg ggg	tat gct atg gac
	(22)		
Out of j	<u>trame (22)</u>		
08	tac tgt gca aga	egg gae act acg eet ace gg	c tat gga cta
10	tac tgt gca aga	cgg gli ggg alg gg	c tat gga cta c
10	tac tgt gca ag	t ccc tat tac tac ggt aga gg	a cia ige tai gga cia c
11	tac tgt gca ag	c cgt tat tact ac ggt agt agc tac ga	g cta tgg act a
1/	tac tgt gca aga	cag ggt acg gta gta gg	t atg cta tgg act a
21	tac tgt gca aga	ccg cct tat tac tac ggt agt agc tac gaa gg	t gga cta
24	tac tgt gca aga	cgg gcg tat ggt aac tac ag	g cta tgg act
29	tac tgt ttg aga	cat gta cgg gta ggg g	ta tgc tat gga cta c
32	tac tgt gca aga	cct cat agg tac gca	act atg cta tgg act a
33	tac tgt gca aga	ggt atg gtt acg acc ct a	tta eta tge tat gga eta e
34	tac tgt gca aga	cat atg att acg ttg	att act atg cta tgg act a
36	tac tgt gca aga	gaa gac gga gac tat agg tcc ggt	cta tgg act a
3/	tac tgt gca aga	cag ggt aca agg gg	g cta tgg act a
38	tac tgt gca aga	tit cic att tac gac ggg g	ct atg cta tgg act a
40	tac tgt gca aga	ctc ctt atg gta aag	atg cta tgg act a
41	tac tgt gca aga	caa ggt ccc tac tat agg tac ggc	act atg cta tgg act
42	tac tgt	acc agg ccc cac tat tac tac ggt agt agc c	tt act atg cta tgg act a
43	tac tgt gca ag	g ggt tac tat agg tac gac gcg g	ta cta tgc tat gga cta
44	tac tgt gca aga	gag gta act c	ct atg cta tgg act a
45	tac tgt gca aga	cac gac ccc tct a	ga c
49	tac tgt gca ag	g gat cgt gaa ggt acg tca tc	c tat gga cta c
50	tac tgt gca aga	ggg ggt atg att acg acg ccg	tta cta tgc tat gga cta d

Premature stop codon (4)

01 ...tac tgt gca ag 02 ...tac tgt gca ag 18 ... tac tgt gca ag 27 ... tac tgt gca a

g gat tta tga g gat cta cta tga c ccc gaa gga cta tag aa gat cta cgg tag

J_H4 segment

at tac tat gct atg gac tac tgg ggt...

tac tgg ggt... tac tgg ggt... tac tgg ggt... tac tgg ggt... tac tgg ggt... tac tgg ggt... tac tgg ggt... tac tgg ggt... tac tgg ggt... tac tgg ggt... tac tgg ggt... tac tgg ggt... tac tgg ggt... tac tgg ggt... tac tgg ggt... tac tgg ggt... tac tgg ggt...

ctg ggg tca... tg ggg tca... ctg ggg tca... act ggg gtc... act ggg gtc... ctg ggg tca... act ggg gtc... tg ggg tca... act ggg gtc... tg ggg tca... act ggg gtc... ctg ggg tca... act ggg gtc... tg ggg tca... tg ggg tca... tta cta tgc tat gga cta ctg ggg tca...