

Supplemental Figure 1. Transcript Abundance from Selected Maize *Atg* Genes Increases as Leaves Mature or Senesce.

Total RNA was isolated from the leaves at the various positions in a mature plant (leaf 1 younger to leaf 12 older at pollination, green color), or from the base (B), middle (M), and tip (T) sections of the seventh leaf (orange color), and subjected to quantitative real time PCR using the comparative cycle threshold method. Values represent the means (±SD) of three biological replicates, each with three technical replicates, which were normalized to that determined for *UBC*9.

Supplemental Figure 2. Developmental and Tissue-Specific Expression Profiles of Maize *Atg18* Genes.

RNA-seq experiments representing 80 developmentally or anatomically distinct maize samples were analyzed for members of the *Atg18* gene family based on reads per kilobase per one million reads (RPKM). Vegetative (V1-18) and reproductive (R1-2)

growth stages were defined based on the Corn Field Guide published by Iowa State University Extension (Abendroth et al., 2011). Dissected primary root- Z1 = Zone 1 (1st cm of root tip); Z2 = Zone 2 (from end of Z1 to the point of root hair/lateral root initiation); Z3 = Zone 3 (lower half of differentiation zone); Z4 = Zone 4 (upper half of differentiation zone). DAP, days after pollination. DAS, days after sowing. DZ, differentiation zone. EZ, elongation zone. MZ, meristematic zone. SAM, shoot apical meristem. More complete descriptions of the tissues are available in Supplemental Table 2 online.

Α Vbr1a Vps15b Atg11b Atg18a Ntg18a Ntg6a Vps34 ps34 tg18g A dg 1t A dg 1t A dg 1t A dg 138 A dg 138 A dg 138 A dg 18 A d 4tg18b 4tg18b 4tg13b 4tg13b 4tg8b 4tg8b 4tg8b 2 6 10 12 14 16 18 20 22 24 Whole Seed (DAP В Atg18b Atg1a 12 14 16 18 20 Atg13b Atg8d Endosperm Atg8b (DAP) 22 24 Atg8c Atg18f 16 18 20 22 Atg1t Embryo (DAP) Atg8a 24 Atg8e 18 DAP Pericarp V1 Pooled Atg13c V1 Pooled V3 Topmost V5 Tip of Stage 2 V5 Base of Stage 2 V7 Tip of stage 2 V7 Base of stage 2 V9 Eleventh V9 Eleventh Atg13d Atg1c Atg1b Atg13a Atg13e Leaf V9 Thirteenth V9 Immature VT Thirteenth R2 Thirteenth Atg13f Atg18d C Atg18e Atg10 (DAP) 12 18 24 30 Atg6b Atg4a V5 First Internode V9 Fourth Internode Atg7 1 Atg3 С Atg16L Internode 12 18 Vps15a (DAP) 24 30 Atg5 Nbr1a Primary Root Root MZ+EZ Vps15b Root DZ Root Cortex (3 DAS) Atg11b Root Stele Atg18a 6 DAS GH Primary Root Root System Atg12 7 DAS) V7 Crown Root Nodes 1-3 V7 Crown Root Root 22 Primary Root 22 Primary Root 23 Primary Root 24 V1 Primary Root 24 Atg6a Atg2 Root (7 DAS) П Vps34 Atg4b Atg18g V7 Crown Root Nodes 1-3 V7 Crown Root Nodes 4 V7 Crown Root Nodes 5 V13 Crown Root Nodes 5 V13 Crown Root Nodes 6 Atg11a Atg9 Atg18h Crown Root Nodes 6 6 DAS GH Coleoptile V5 Shoot Tip V1 Stem and SAM V3 Stem and SAM V13 Immature Tassel Atg18c Atg101 V18 Meiotic Tassel R1 Anthers V18 Immature Cob R1 Pre-pollination Cob R1 Silks RPKM 2 ≥2.5 ò

Supplemental Figure 3. Developmental and Tissue-Specific RNA-seq Expression Profiles of Maize Autophagy Genes Clustered by Co-expression.

(A) Heat map of *Atg* genes showing the spatio-temporal expression pattern after hierarchical clustering. RNA-seq experiments representing 80 developmentally or anatomically distinct maize samples were analyzed for autophagy-related genes based on reads per kilobase per one million reads (RPKM) and clustered in R based on co-expression. The color indicates the degree of fold change: red, high; black, low. Vegetative (V1-18) and reproductive (R1-2) growth stages were defined based on the Corn Field Guide published by lowa State University Extension (Abendroth et al., 2011). Dissected primary root- Z1 = Zone 1 (1st cm of root tip); Z2 = Zone 2 (from end of Z1 to the point of root hair/lateral root initiation); Z3 = Zone 3 (lower half of differentiation zone); Z4 = Zone 4 (upper half of differentiation zone). DAP, days after pollination. DAS, days after sowing. DZ, differentiation zone. EZ, elongation zone. MZ, meristematic zone. SAM, shoot apical meristem. See Supplemental Table 2 online for full descriptions of the tissues analyzed.

(B) Hierarchical cluster display of maize *Atg* genes analyzed in (A).

Supplemental Figure 4. Developmental and Tissue-Specific Alternative Splicing of Maize *Atg* Gene Isoforms in Endosperm and Leaf Tissues.

RNA-seq experiments spanning **(A)** endosperm development (DAP 12 to 24) and **(B)** dissected fifth and seventh leaves (Base and Tip) were analyzed for splice-specific isoforms from various *Atg* loci. Gene families encoding particular ATG factors are highlighted on the left along with the number for each transcript isoform. The color indicates the degree of fold change based on reads per kilobase per one million reads (RPKM): red, high; black, low. DAP, days after pollination.

	М	А	Α	Е	А	D	Q	к	v	v	v	н	v	R	S	т	G	D	A	P	I	1	LR	ç	2	s	к	F	
WT	ATG	GCC	GCG	GAG	GCA	GAT	CAG	AAA	GTC	GTG	GTG	CAC	GTG	CGG	TCA	ACG	GGG	GA	TGC	GCC	GAT	CC	FGA	GC	AAT	CC.	AAA	тт	
atg12-1	ATG	GCC	GCG	GAG	GCA	GAT	CAG	AAA	GTC	GTG	GTG	CAC	GTG	CGG	TCA	ACG	GGG	GA	TGC	GCC	GAT	CC	FGA	GC	AAT	CC.	AAA	тт	
atg12-2L	ATG	GCC	GCG	GAG	GCA	GAT	CAG	AAA	GTC	GTG	GTG	CAC	GTG	CGG	TCA	ACG	GGG	CGA	TGC	GCC	GAT	CC	FGA A	GCI	AAT	CC:	AAA	TT	
atg12-25	ATG	GCC	GCG	GAG	GCA	GAT	CAG	AAA	GTC	GTG	GTG	CAC	GTG	CGG	TCA	ACG	GGG	GA	TGC	GCC	GAT	CC	FGA A	GCI	AAT	CC.	AAA	тт	
	ĸ	I	S	G	R	D	к	F	L	ĸ	v	I	E	F	' I	. R	F	2	Q	LI	H	Q	D	т	L	F	v		
WT	CAA	GAT	TTC.	AGG	ACG	AGA	TAAG	GTT	TCT	GAA	GGT	CAT.	AGA	GTT	TCT	'TCG	TCO	AC	AAC	TGC.	ATC	AG	GATA	CAG	CΤG	тт	TGT	СТ	
atg12-1	CAA	GAT	TTC.	AGG	ACG	AGA	TAA	GTT	тст	GAA	GGT	CAT.	AGA	GTT	TCI	TCG	TCO	AC	AAC	TGC.	ATC	AG	GATA	CAC	CTG	ТТ	ΤGΙ	СТ	
atg12-2L	CAA	GAT	TTC.	AGG	ACG	AGA	TAAG	GTT	TCT	GAA	GGT	CAT.	AGA	GTI	TCI	TCG	TCO	AC	AAC	TGC.	ATC	AGO	GATA	CAG	ΤG	TT.	TGT	CT	
atg12-25	CAA	GAI	TTC.	AGG	ACG	AGA	TAAG	5T T	TCT	GAA	GGT	SAT.	AGA	GTT	TCI	TCG	TCO	AC	AAC	TGC.	AIC	AG	SATA	CAU	JT G		TGT	СТ	
																					R	D	N	С	H	C (Y	G	atq12-1
																				т	G	р	N	С	н		v	G	ata12-21.
	v	. .	NT .	c	"				NT .			65			т.	D	Ŧ	v	ът7	2		2		<u>د</u>			•	•	acy12-20
	I .			а ала				1						V	1 11 1 1 1 1		L	<u>I</u>	N										
WT	ATA	ICA.	ACA	GTG	CAT			AA	ACC	CAG	ATG	AAC	TGG	TAA	TAC	ACI	TGI	:AT	AAT				+	+ ~					
atg12-1	ATA	TCA.	ACA	616 676	CAT	T T T T		-AA	ACC	CAG	ATG	AAC	тсс	ΠΔΔ	TAG	ACT	In Ch	121	аал	a + +	-ya aaa	ga	taat taat	+ a	rca	++	aty ato	iga iga	
atg12-25	ATA	TCA	ACA	GTG	CAT	TTTT	CGC	AA	ACC	CAG	ATG	AAC	TGG	TAA	TAG	ACT	TGT	אי	ААТ		994 								
-																													
	R	R	Е	Е	v	I	R	R	N	G	G	v	G	v	G	F	S	V	' I	. E	_ T		Q P	A . 1	r	Α	к	L	atg12-1
	R	R	A	D	G	I	R	R	N	G	G	D	G	v	G	F	S	v	· 1	. Е	1		O J	A .	r	A	K	R	atg12-2L
WT																													-
atg12-1	cga	aga	gag	gag	gtg	att	cga	cga	aat	gga	ggc	gtt	ggc	gtt	ggo	tto	tct	tgt	tct	gga	gac	gc	aggo	ga	cag	ICC	aaa	act	
atg12-2L	cga	aga	gcg	gac	ggg	att	cga	cga	aat	gga	ggc	gat	ggc	gtt	ggo	ctto	ctci	tgt	tct	gga	gac	gc	aggo	ga	cag	1CC	ааа	acg	
atg12-25																													
	Q	N	G	K	E	T	Α	L	G	т	т	L	_ T	E	: 1	. V	1 1	1	*	atg	12-	-1							
	0	N	G	K	K	- T	Α	L	G	A	- T	L	- T	E	: 1	. V	1 1	1	*	atg	12-	2L							
	~														N	F	G	т	п	G	к	т.	v	v	N	J	v	Δ	
WT														5	AC	The second s	GA	ATT 1	GAT	GGG	AAG	ст	AGTO	GT	A A A	ТТ	ATC	ЪCТ	
atg12-1	cca	aaa	cgg	aaa	gga	gac	agc	gct	tgg	aac	tac	gtt	aac	ag	AC	гтто	GGA	ATT	GAT	GGG	AAG	СТ	AGT	GT.	AAA	ΔTT	ATC	ЗСТ	
atg12-2L	cca	ааа	cgg	aaa	gaa	gac	agc	gct	tgg	agc	tac	gta	aac	ag	AC	TTT	GGA	АТТ	GAT	GGG	AAG	СТ	AGT	GGT.	AAA	ΔTT	ATC	ЗCТ	
atg12-25															AC	TTT	GA	ATT	GAT	GGG	AAG	СТ	AGTO	GT.	AAA	ΥT	ATC	CT	
	L	s	А	А	L	G	*																						
1.101	ТТА	тсс	GCA	GCA	шле	GGC	ТАА																						
ata12-1	TTA	TCG	GCA	GCA	TTG	GGC	TAA																						
atg12-2L	TTA	TCG	GCA	GCA	TTG	GGC	TAA																						
atg12-25	TTA	TCG	GCA	GCA	TTG	GGC	TAA																						

Supplemental Figure 5. Nucleotide and Amino Acid Sequence Alignment of Wild-Type *ATG12* and the *atg12-1* and *atg12-2* Mutants.

The amino acid sequence of wild-type B73 ATG12 and the regions changed by the *atg12-1* and *atg12-2* mutations are shown in black, red, and green letters above the nucleotide sequences. Nucleotides not shaded in black represent those introduced by the *UniformMu* insertion. The *atg12-1* transcript contains a 156-bp insertion derived from *UniformMu* that introduced a random 51-amino acid sequence (red color) followed by a stop codon after Glu-65. A 159-bp insertion was appended by *UniformMu* to the *atg12-2* long transcript (*atg12-2L*) that also introduced a 52-amino acid sequence (green color) followed by a stop codon after Asn-72. Asterisk indicates stop codon.

Anti-Ub Antibodies	gold/μm²
Aggregates	1.57 ± 0.42
Cytoplashi	0.09 ± 0.10

SupplementalFigure6.ElectronMicroscopyImagesofCells fromatg12Mutants.

(A) Images of N-starved atg12-1 root cells pretreated with ConA showing that the YFP-ATG8a-containing aggregates also contain ubiquitin (arrowheads) as determined by immunogold-labeling with antiubiquitin antibodies. Table shows quantification of gold particles in six independent aggregates and 15 random areas of surrounding cytoplasm. The data indicate a strong enrichment (17 fold) of ubiquitin in the YFP-ATG8a aggregates.

(B) The atg12-1 mutant accumulates seed storage proteins normally. Shown are transmission EM pictures after cryofixation of aleurone and starchy endosperm cells from wild-type (WT) W22 and mutant seeds at 24 DAP. PSV, protein storage vacuole. PB, ERassociated protein body. Asterisks, storage protein-rich aggregates.

Supplemental Figure 7. *atg12* Mutants Produce Viable Pollen and are not Hypersensitive to Phosphorus or Sulfur Limitation.

(A) *atg12* mutants produce healthy pollen. Pollen was obtained from anthers of wildtype W22, *atg12-1* and *atg12-2* plants, and tested for viability with Alexander stain (Alexander, 1969). Non-viable pollen remains translucent in the stain. Bar = 50 μ m. (B) *atg12* plants grown normally without added phosphate or sulfur. Plants were grown on pre-washed Metro-Mix 360 soil and watered with phosphorus-deficient (-P) (5 mM KNO₃, 2 mM MgSO₄, 5 mM Ca(NO₃)₂, 0.05 mM Fe-EDTA, 1x Micronutrients, and 1 mM KCl), or sulfur-deficient (-S) Hoagland solutions (5 mM KNO₃, 2 mM MgCl₂, 1 mM KH₂PO₄, 5 mM Ca(NO₃)₂, 0.05 mM Fe-EDTA, 1x Micronutrients) for 7 weeks before the photographs were taken.

Supplemental Figure 8. Field-Grown *atg12* Mutants Display Early Leaf Senescence. Wild type W22, and the homozygous *atg12-1* and *atg12-2* mutants were grown on N-fertilized soil at the West Madison Agricultural Research Station during the summer of 2014. Photographs were taken 3 months after sowing and 20 DAP.

Supplemental Figure 9. ¹⁵N Labeling Efficiency of Wild-Type, *atg12-1,* and *atg12-2* Maize Plants.

Plants at 40 DAG were labeled for 2 days with ${}^{15}NO_{3}$, harvested 7 days later, and then measured for dry weight (DW) and ${}^{15}N$ incorporation in various plant parts. Two biological replicates each containing six plants were used for data analysis (n=12). Values are adjusted means (±SD).

(A) Biomass as measured by dry weight of remains (stalk + upper leaves + lower leaves).

(**B-E**) ¹⁵N accumulation in stalk (B), lower leaves (C), upper leaves (D), and roots (E).

Gene	Arabidonsis ID	Gene	Maize ID	Splicing variant ^a	No. of Amino Acid Residues	Identity/Similarity to Arabidopsis
ATG1/13 kin	ase complex	Gene		vanant	Acia Residues	
At ATG1a	AT3G61960	Zm Atg1a	GRMZM2G105415	2	538	34/47%
At ATG1b	AT3G53930	Zm Atg1b	GRMZM2G160428	3	703	47/61%
At ATG1c	AT2G37840	Zm Atg1c	GRMZM2G164160	2	704	48/62%
At ATG1t	AT1G49180	Zm Atg1t	GRMZM2G104658	2 (T01)	283	47/62%
At ATG13a	AT3G49590	Zm Atg13a	GRMZM2G129675	1	536	33/43%
At ATG13b	AT3G18770	Zm Atg13b	GRMZM2G109348	1	533	33/45%
		Zm Atg13c	GRMZM5G825909	1	511	32/44%
		Zm Atg13d	GRMZM2G000973	1	512	32/43%
		Zm Atg13e	GRMZM2G044733	1	606	35/50%
		Zm Atg13f	GRMZM2G125352	2 (T01)	606	34/50%
At ATG11	AT4G30790	Zm Atg11a	GRMZM2G143445	1	1,139	45/64%
		Zm Atg11b	GRMZM2G119571	1	1,143	45/64%
At ATG101	AT5G66930	Zm Atg101	GRMZM2G160174	4 (T03)	213	40/54%
PI3 kinase o	omplex					
At PI3K	AT1G60490	Zm <i>PI3K</i>	GRMZM2G103721	2 (T01)	803	73/85%
At ATG6	AT3G61710	Zm Atg6a	GRMZM2G092112	1	499	55/70%
		Zm Atg6b	GRMZM2G027857	1	579	52/63%
At VPS15	AT4G29380	Zm <i>Vps15a</i>	GRMZM2G179662	2 (T01)	1,480	52/68%
		Zm Vps15b	GRMZM2G111491	1	1,561	49/64%
ATG9/2/18 c	complex					
At ATG2	AT3G19190	Zm Atg2	GRMZM2G042889	1	1,438	23/38%
At ATG9	AT2G31260	Zm Atg9	GRMZM2G035461	1	888	50/63%
At ATG18a	At3g62770	Zm Atg18a	GRMZM2G122607	1	442	63/73%
At ATG18b	AT4G30510	Zm Atg18b	GRMZM2G146280	2 (T01)	449	61/71%
At ATG18c	AT2G40810	Zm Atg18c	GRMZM2G069177	2 (T01)	417	47/61%
At ATG18d	AT3G56440	Zm Atg18d	GRMZM2G143211	2 (T01)	417	65/77%
At ATG18e	AT5G05150	Zm Atg18e	GRMZM2G018573	2 (T01)	371	48/63%
At ATG18f	AT5G54730	Zm Atg18f	GRMZM2G116700	2 (T01)	865	33/48%
At ATG18g	AT1G03380	Zm Atg18g	GRMZM2G546452	2 (T02)	381	16/22%
At ATG18h	AT1G54710	Zm Atg18h	GRMZM2G078468	2 (T02)	1,557	31/40%
		Zm Atg18i	GRMZM2G301031	n.d		
		Zm Atg18j	GRMZM2G103793	n.d		
ATG8/12 co	njugation pathway					
At ATG3	AT5G61500	Zm Atg3	GRMZM5G818887	2 (T01)	311	71/84%
At A/G4a	AT2G44140	Zm Atg4a	GRMZM2G064212	2(102)	492	50/67%
At ATG4b	AT3G59950	Zm Atg4b	GRMZM2G173682	2	492	50/66%
At ATG5	AT5G17290	Zm Atg5	GRMZM2G098420	4	374	50/68%
At ATG7	AT5G45900	Zm Atg7	GRMZM2G005304	1	1,021	48/63%
At A/G8a	A14G21980	Zm Atg8a	GRMZM2G336871	2 (102)	119	85/94%
At ATG8b	A14G04620	∠m Atg8b	GRMZM2G419694	5(104)	120	86/94%
At ATG8c	AT1G62040	Zm Atg8c	GRMZM2G076826	5 (T01)	120	86/94%
At ATG8d	AT2G05630	Zm Atg8d	GRMZM2G134613	2 (T02)	119	86/94%
At ATG8e	AT2G45170	Zm Atg8e	GRMZM2G014975	8 (102)	119	85/94%
At A / G8f	A14G16520					
At ATG8g	A13G60640					
At ATG8h	AT3G06420					
At ATG8i	AT3G15580					
At ATG10	AT3G07525	Zm Atg10	GRMZM2G066059	8	215	44/60%
At ATG12a	AT1G54210	Zm Atg12	GRMZM5G842517	3 (T02)	91	82/89%
At ATG12b	AT3G13970					
At ATG16L	AT5G50230	Zm Atg16L	GRMZM2G078252	2 (T02)	505	54/74%
Cargo recep	otor					
At NBR1	AT4G24690	Zm Nbr1a Zm Nbr1b	GRMZM2G092447	1 n d	842	34/46%
			UNIVIZIVIZO 139040	n.u.		

Supplemental Table 1. Collection of Arabidopsis and Maize Atg Genes

^a Number of splicing variants were detected by analyzing RNA-seq data; Names of the dominant splice isoforms are shown in parentheses. n.d. = not detected.

Supplemental Ta	able 2. List of Tissu	ues Analyzed by	RNA-seq in this Study
-----------------	-----------------------	-----------------	------------------------------

	Tissue name		Tissue name
1.	Whole Seed, 2 DAP	41.	Leaf, 18 DAP
2.	Whole Seed, 4 DAP	42.	Leaf, 24 DAP
3.	Whole Seed, 6 DAP	43.	Leaf, 30 DAP
4.	Whole Seed, 8 DAP	44.	First Internode, V5
5.	Whole Seed, 10 DAP	45.	Fourth, Internode, V9
6.	Whole Seed, 12 DAP	46.	Internode, 0 DAP
7.	Whole Seed, 14 DAP	47.	Internode, 6 DAP
8.	Whole Seed, 16 DAP	48.	Internode, 12 DAP
9.	Whole Seed, 18 DAP	49.	Internode, 18 DAP
10.	Whole Seed, 20 DAP	50.	Internode, 24 DAP
11.	Whole Seed, 22 DAP	51.	Internode, 30 DAP
12.	Whole Seed, 24 DAP	52.	Primary Root, 3 DAS
13.	Endosperm, 12 DAP	53.	Root Meristematic Zone (MZ) and Elongation Zone (EZ), 3 DAS
14.	Endosperm, 14 DAP	54.	Root differentiation zone (DZ), 3 DAS
15.	Endosperm, 16 DAP	55.	Root Cortex, 3 DAS
16.	Endosperm, 18 DAP	56.	Root Stele, 3 DAS
17.	Endosperm, 20 DAP	57.	Primary Root, 6 DAS
18.	Endosperm, 22 DAP	58.	Root System, 7 DAS
19.	Endosperm, 24 DAP	59.	Primary Root, 7 DAS
20.	Embryo, 16 DAP	60.	Seminal Roots 7 DAS
21.	Embryo, 18 DAP	61.	Primary Root Zone 1 (1st cm of root tip); 7 DAS
22.	Embryo, 20 DAP	62.	Primary Root Zone 2 (from end of Z1 to the point of root hair/lateral root initiation), 7 DAS
23.	Embryo, 22 DAP	63.	Primary Root Zone 3 (lower half of differentiation zone), 7 DAS
24.	Embryo, 24 DAP	64.	Primary Root Zone 4 Zone 4 (upper half of differentiation zone), 7 DAS
25.	Pericarp, 18 DAP	65.	Primary Root, V1, 4 day after emergence
26.	Pooled Leaves, V1, 4 day after emergence	66.	Crown Roots, Nodes1-3, V7
27.	Topmost Leaf, V3	67.	Crown Roots, Node4, V7
28.	Leaf Bottom, V5	68.	Crown Roots, Node5, V7
29.	Leaf Tip, Stage2, V5	69.	Crown Roots, Node5, V13
30.	Leaf Bottom, V7	70.	Brace Roots, Node6, V13
31.	Leaf Tip, V7	71.	Coleoptile, 6 DAS
32.	Eighth Leaf, V9	72.	Shoot Tip, V5
33.	Eleventh Leaf, V9	73.	Stem and SAM, V1, 4 day after emergence
34.	Thirteenth Leaf, V9	74.	Stem and SAM, V3
35.	Immature Leaves, V9	75.	Immature Tassel, V13
36.	Thirteenth Leaf, VT	76.	Meiotic Tassel, V18
37.	Thirteenth Leaf, R2	77.	Anthers, R1
38.	Leaf, 0 DAP	78.	Immature Cob, V18
39.	Leaf, 6 DAP	79.	Pre-pollination Cob, R1
40.	Leaf, 12 DAP	80.	Silks, R1

Supplemental Table 3. Oligonucleotide Primers Used in This Study

Zm Atg12 RT-PCR primers

Primer 1:	ATGGCCGCGGAGGCAGATCAGAAAG
Primer 2:	TTAGCCCCATGCTGCCGATAAAGCA
Primer 3:	CTGAAGGTCATAGAGTTTCTTCGTCG
Primer 4:	CGACGAAGAAACTCTATGACCTTCAG

Primers used for qRT-PCR analysis of wild type-like transcripts in maize atg12-2 mutant

Primer 5:	CCGCGGAGGCAGATCAGAAA
Primer 6:	TCAATTCCAAAGTTATTATACA

Zm Atg12 mutant genotyping primers

GCCCCGATTTTTTTATCCCCAGAT
CTGAAGGTCATAGAGTTTCTTCGTCG
TTAGCCCCATGCTGCCGATAAAGCA
TGTACTTCCAAGCTCTTTACCTGAGG
AGAGAAGCCAACGCCAWCGCCTCYATTTCGTC

Primers used for qRT-PCR analysis of maize Atg genes

ZMATG1a-RT-F1:	GTGACTTTGGGTTTGCCAGGTC
ZMATG1a-RT-R1:	TGGCGACCCACATATTGTAGCAG
ZMATG2-RT-F1:	CACTTCTTGGGCTAAGGAACAGC
ZMATG2-RT-R1:	CGCCAAAGAATGAACCGACCAC
ZMATG3-RT-F1:	GTACTACCAAACTCCACGTGTCTG
ZMATG3-RT-R1:	GGCATTAATGGCATTCTTGACTCG
ZMATG4a-RT-F1:	CCATGTTTCGTGCTACTGCTAGAC
ZMATG4a-RT-R1:	GCAAGCTCGTCATCACCTAACG
ZMATG4b-RT-F1:	TGGGACGTCAACATACATTGCTG
ZMATG4b-RT-R1:	GCCAAATCTCGGACAACACTGC
ZMATG5-RT-F1:	AGACTCGCAAGGCTGAAGGTAG
ZMATG5-RT-R1:	GCTGAAGAACTCCGGAAGCAATG
ZMATG6-RT-F1:	GCTGTTGCATACCATGGCTCAG
ZMATG6-RT-R1:	GGGTGAATCTTGATCCGGTATTGG
ZMATG7-RT-F1:	ACGTCATTGCTCCTGTCGACTC
ZMATG7-RT-R1:	AGCGCGTCCTGATGCAATAGAG
ZMATG8a-RT-F1:	AGAACACCTTGCCACCAACTGC
ZMATG8a-RT-R1:	ATTGCTCTAGGCAGAGCCGAAG
ZMATG8b-RT-F1:	TCTTCGTTCGATCCGTTCGC
ZMATG8b-RT-R1:	ATCACGCTCCTTCCTGCCTTAC
ZMATG8c-RT-F1:	TTCGATCCAACTGGCAGGAAGG
ZMATG8c-RT-R1:	AGCCTCAGACTGCCTCTTCTCAAG
ZMATG8d-RT-F1:	TCTGTTCCAGGTCGCTTCTCTCTG
ZMATG8d-RT-R1:	TTAGCCTCAGCTTGCCTCCTTTCG
ZMATG8e-RT-F1:	ACTGTCAGCTCTGGGTTGCTTC
ZMATG8e-RT-R1:	TTTGCCACATCGACAAGCTCACG
ZMATG9-RT-F1:	GTGGGAGATGTATGCAGTCTAAGC
ZMATG9-RT-R1:	AGAGCATTGAATGGTGACCCATAG
ZMATG10-RT-F1:	AAGCCGTGCAGCAAATTGGG

ZMATG10-RT-R1: ACAGCTGCGGTACACTCTTTCC ZMFIP200a-RT-F1: AGAAGAGGGTGGAAGGCTTATTCC ZMFIP200a-RT-R1: TGAGGTGTCCACATCTTTGCTTAG ZMFIP200b-RT-F1: AGGAATCTGTCGCCTTGTTCACC ZMFIP200b-RT-R1: ACGATCTGCCCGATTATGTACGC ZMATG12-RT-F1: GGCTCGTGGTAACTTGTTGTCG ZMATG12-RT-R1:: TGCACCACGACTTTCTGATCTGC ZMATG16-RT-F1: AGGCTGAACTTGAGAAGACAAGCG ZMATG16-RT-R1: AGCTCGGATTTCACTGTCTGATGC ZMATG101-RT-F1: AAGGGCTGACAAACATCCAAGC ZMATG101-RT-R1: TCGTTAATCGACGCCTCCAATGC ZMATG18a RT-F1: ACTGCTAGCACCAAGGGAACAC ZMATG18a RT-R1:TCAGCACCTCTCCTTACTTCCTG ZMATG18e RT-F1: TCCAAATTTCCCTCGCTGAAGAC ZMATG18e RT-R1: TTCACGCTCCAACAACCATGAAG ZmATG18f-RT-F1: ACCAGTCTTCGACTCCCTCCATAC ZmATG18f-RT-R1: TCAGGAGCGTTCAACCTTGTCTG ZmUBC-F1: AAGATGCAGGCATCTAGGGCAAGG ZmUBC-R1: AGGCTCTTGGCTTGGCACATGTTC

Primers used for generating Gly117Ala mutant of maize ATG8a

ZmATG8a_F1:	CACCATGGCCAGGACCTCTTTCAAAATG
ZmATG8a_R2:	TGCTCTAGGCAGAGGCGAAGGTGT