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Supplementary Methods 

 

Simulation Settings 

 

The proposed calculation of mutual information was evaluated through simulation studies. In 

each simulation, we considered a certain relation between two discrete variables where the true 

mutual information can be calculated. For two categorical variables X and Y whose relation was 

predefined, the mutual information was estimated from random samples. Six different relations 

were used for the simulation studies with various sample sizes (50, 100, 200, 500, 1,000, and 

2,000), and numbers of categories per variable (2, 5, 10, 20, 50, and 100). Each simulation was 

repeated 100 times. The proposed methods with different p-value thresholds were compared with 

the true mutual information as well as the results of conventional calculation. All simulations are 

for the variables of which categorical values cannot be ordered.  

 

Six simulation settings are listed here. 

 

(1) Step structure with low mutual information: Considering X and Y with two super categories 

for each, i.e. X ∈ {w1,w2} and Y ∈ {v1,v2}, their relation is given by 2 x 2 joint probabilities. 

We consider that p(w1,v1)=0.4, p(w1,v2)=0.1, p(w2,v1)=0.2, and p(w2,v2)=0.3. Here, we assume 

that n/2 fine categories per each super category are actually observed instead of the super 

categories. Let x1, …, xn/2 be observed for w1, and xn/2+1, …, xn be for w2. Similarly, y1, …, yn are 

assumed to be observed for the super categories of Y. The combinations of the fine categories are 

assumed to be uniformly distributed within the corresponding combination of the super 

categories. For example, (n/2)2 combinations of {x1, x2, …, xn/2}×{y1, y2, …, yn/2}are uniformly 

distributed in w1×v1 of which probability is 0.4. For the simulation, the mutual information of X 

and Y is estimated from randomly generated data with n fine categories per variable, and 

compared with the true mutual information, 0.09 bits. 

 

(2) Step structure with high mutual information: This setting is similar with (1), but the joint 

probability of the super categories are given as p(w1,v1)=0.7, p(w1,v2)=0, p(w2,v1)=0, and 



p(w2,v2)=0.3. Here, the true mutual information is 0.61 bits. 

 

(3) Gaussian structure with low mutual information: The joint population of X and Y is defined 

by a bivariate joint Gaussian distribution, of which marginal distributions are standard and the 

covariance (σ) is 0.49. First, continuous random samples are generated from the joint distribution. 

The observed range of the continuous samples is uniformly discretized as n categories for each 

variable. Each sample falls into one of n2 combinations of discretized X and Y, and has 

corresponding categorical values for X and Y. From the data with n categories per variable, the 

mutual information is estimated. Different from continuous variables, here the Gaussian structure 

is hardly observed because the discretized categories are observed without orders. When the 

marginal variance is 1, the theoretical mutual information of a joint Gaussian distribution is 

given as log(1/(1−σ2)), which is 0.14 bits in this case. 

 

(4) Gaussian structure with high mutual information: This setting is similar with (3), but the 

covariance of X and Y is given as 0.81. The true mutual information is 0.53 bits. 

 

(5) Random structure with low mutual information: A random relation between X and Y can be 

constructed by randomly generated joint probability masses. The probabilities of n categories of 

X are generated from an exponential distribution with λ=1. Let pX denote the vector of these n 

probability masses. Similarly, the marginal probability mass vector of Y, pY, is randomly 

generated from the same exponential distribution. We obtain an n x n matrix of the joint 

probability distribution, P1 = pXpY
T. P1 is the joint probability masses of a randomly structured 

but independent relation. Independently, we obtain P2, another n x n probability matrix, by 

randomly generating n2 joint probability masses from an exponential distribution (λ=1). P2 

represents a randomly structured and dependent relation. To ensure random structure and 

dependency, (P1+P2)/2 is used for the final joint probability distribution. Samples are randomly 

generated by the final joint probabilities, from which the mutual information is estimated. 

Although the theoretical mutual information is hard to be obtained in this case, it can be 

empirically estimated with many samples (one million in this work). The true mutual information 

is expected to be different as the number of categories. 



 

(6) Random structure with high mutual information: This setting is similar with (5), but only P2 

is used for the final probabilities. In this case, X and Y are more dependent to each other than (5). 

Consequently, this setting simulates a random structure with higher mutual information than (5). 

 

 

Time Complexity 

 

The number of samples in the input data (n) is often used as the input data size for the calculation 

of time complexity. In the proposed algorithm, the number of categories of input discrete 

variables (d) can be considered as another input data size of interest. Here, we calculate the time 

complexity for each input data size, n and d. Consider the worst case that the whole sample space 

is partitioned into the finest combinations of categories of two variables. At every partitioning 

the marginal population should be calculated, which is simply counting samples. Since the 

number of partitions only depends on the number of categories in the worst case, the overall 

complexity as the number of samples n is O(n). To derive the time complexity for the number of 

variable categories d, assume that two variables can have d categorical values. At every 

partitioning, categorical values should be sorted, of which complexity is klogk when there are k 

categories in a subregion. In the worst case, k categorical values are partitioned into two 

subregions with 1 and k-1 categories, respectively. Therefore, the overall complexity for the 

number of categories d is ( )∑ −
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Supplementary Table S1. Available data sets of discrete variables with many categories. 

Data set Description Variable Number of 
Categories 

Sample 
Size 

MIMIC21 Clinical records in intensive care Diagnosis of 
admission ~300 ~5,000 

Medicare2 Medicare records in the US 
(1990-1993) Inpatient claim ~1,000 ~32M 

STRIDE3 Electronic health records of 
Stanford hospitals (2005-2010) 

Inpatient claim ~1,000 ~2.7M 
Medical operation ~1,000 ~3.1M 

T-cell 
repertoire4 

Short sequencing reads of T-cell 
receptors mapped to specific V, D 
and J segments 

V segment ~80 
~1M D segment ~30 

J segment ~6 

PheWAS5 Phenome-wide association study 
Disease group ~1,500 

~13,000 
Genotype of n SNPs 3n 

 

1Scott, D. J. et al. Accessing the public MIMIC-II intensive care relational database for clinical research. BMC Med 
Inform Decis Mak 13, 9 (2013). 
2Hidalgo C.A. et al. A Dynamic Network Approach for the Study of Human Phenotypes. PLoS Computational 
Biology, 5(4):e1000353 (2009). 
3https://med.stanford.edu/clinicalinformatics.html 
4Georgiou, G. et al. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat 
Biotechnol 32, 158-168 (2014). 
5Denny, J. C. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease 
associations. Bioinformatics 26, 1205-1210 (2010). 



 

Supplementary Figure S1. Noise effects on mutual information. Uniformly distributed noise 

was added to samples generated by the simulation setting (4) in the main text. The x-axis is the 

ratio of noise samples among the whole samples. Shown are the expected mutual information 

(black dashed) as well as estimations by the proposed method (red solid) and the conventional 

method (black solid). 



 

Supplementary Figure S2. Mutual information of the ICU data with various p-value 

thresholds. Shown are the mutual information values calculated from 296 x 252 3-digit ICD9 

codes (level-3 categories) as well as 17x16 level-1 and 89 x 76 level-2 categories, by the 

proposed method with p-value threshold 0.5 (red) and the conventional method (black). The 

results of the proposed method with various p-value thresholds are also shown (red dashed). 

 


