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1 Method

1.1 Soft lithography

Devices are fabricated using the classical soft-lithography with replica molding method (1). They
are made of a silicone elastomer, the polydimethylsiloxane (PDMS) which allows gas exchange (2).
The desired design is created with a computer-aided design software (Clewin, WieWeb Software,
Netherlands), which we print on a transparency (for ÃŠlargeÃŞ features between 10 and 200 µm)
by a high-resolution commercial image setter. This transparency serves as the photomask in con-
tact photolithography. The soft lithography step produces a positive relief of photoresist (SU-8,
MicroChem Corp, USA) on a silicon wafer. The speed of the spin-coater sets the thickness of this
layer of photoresist, controlling the height of the channels. Then, we pre-bake the wafer for several
minutes at 65oC and 95oC (exact times depends on the brand of the photoresist and the desired
thickness) in order to initiate the polymerization of the SU-8. A UV source is used to expose the
silicon wafer covered with the photomask. Another baking step finishes to cure the photoresist.
Dissolving away the non-illuminated — and so the non-polymerized — photoresist leaves a positive
relief that serves as a master. Then PDMS channels are formed by replica molding (ridges on the
master appear as valleys in the replica). We mix the solution of silicone elastomer with a curat-
ing agent (Sylgard 184 kit silicone elastomer, Dow Corning) in a ratio 10/1 and homogenize the
mixture. After pouring the solution into a petri dish over the master, we degas under a vacuum
in order to get rid of any bubbles. The whole preparation is cured in an oven at 65oC for 1 hour.
The replica is then peeled from the master and access holes are punched out of the cured layer by
using a truncated needle before assembly.

Since PDMS is porous to gas, we use this feature to control the oxygen concentration in the
channels via a two-layer device. The first layer of 60 µm in thickness is engraved with channels of
30 µm high where RBCs flow. This layer is bonded to a glass microslide using a corona discharge
for tens of seconds produced by a hand-held discharge unit (Electro-Technic Products, model BD-
20AC) with an output voltage of 25 kV. If a rubber-like polymer such as PDMS is placed under
such a corona discharge, the charged particles that are generated deposit on the surface, where
they initiate radical reactions that modify the rubber surface by creating functional groups (e.g.
Si-OH), which are used to bond covalently PDMS to PDMS or to glass. The treatment has to be
fast because the PDMS gas permeability decreases while exposed to the corona discharge (3). The
second layer, dedicated to the gas flow is bonded on the top of the first one. The channels are 500
µm width and 80 µm high and cover all of the surface of the chip to maximize the gas exchange.

2 Description of the numerical simulations
Two types of computer simulations are performed to support the analysis of the experimental
results. First, the flow around a triangular pillar is computed, in the absence of cells. Then,
two-dimensional simulations illustrate how deformable objects may interact when flowing around a
pillar. All the simulations were performed using YALES2BIO (http://www.math.univ-montp2.fr/-
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∼yales2bio), an in-house flow solver developed at the I3M. It is based on the YALES2 solver
(http://www.coria-cfd.fr/index.php/YALES2), developed at CORIA, in Rouen (France). YALES2BIO
is dedicated to the simulations of blood flows, either with or without the presence of deformable
cells (4–6).

2.1 Numerical simulations of the flow around a pillar

The complete geometry of the RBC channel (displayed in figure 1 of the paper) is complex. The
ratio between the smallest geometrical length scales and the length of the channel is also very
small. A full computation of the flow in the channel would thus be tedious. The objective here is
to get information about the flow around one triangular pillar. However, pillars are surrounded by
other pillars, which makes the computation of the flow around one isolated pillar irrelevant. It was
thus decided to compute an asymptotic case, in which the fluid flows around an infinite number of
pillars, arranged in a staggered manner, as in the experiment. In this configuration, it is possible to
reduce the computational domain using periodic boundary conditions. Such a technique is classical
for computations for channel flows (7) and has also been used for more complex flows (8).

2.1.1 Geometry

The geometry of the computational domain is shown in figure S4. The periodic array of pillars is
suggested in the figure by the presence of the neighboring pillars, drawn in dashed lines. Three
pairs of periodic boundary conditions delimitate the frontiers of the computational domain (thin
solid lines). In the z direction, the computational domain has a height of h = 30 µm: it is closed
by impermeable walls at z = ±15 µm. Pillars are staggered in space, the distance between two
pillars being L = 200 µm. The pillar itself is an isosceles triangle with rounded corners. We denote
by c1 the left corner (leading edge) and c2 and c3 the right (downstream) corners. The radius of
curvature for the corners is 4 µm for c1 and 5 µm for c2 and c3. The ‘heights’ of the pillar are 54
µm from c1 to the opposite edge and 50 µm from c2 (resp. c3) to the opposite edge (the angle of
c1 is approximately 54 degrees).

2.1.2 Boundary Conditions

Periodic boundary conditions are applied on the three pairs of frontiers of the hexagonal domain
(thin solid lines in figure S4). In order to generate the flow, a mean pressure gradient is imposed via
a constant source term in the x direction. Non-slipping wall boundary conditions are applied on the
pillar surface. In the z direction, non-slipping wall boundary conditions are applied at z = ±15 µm.

2.1.3 Grid

In order to compute the flow in this periodic domain, it is discretized using tetrahedral cells. The
tetrahedral grid used is composed by 2.35 million elements. The grid resolution is set to 2 µm far
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from the pillar (near the periodic boundary conditions) and smoothly decreases to reach 1 µm near
the pillar. No significant change in the results has been observed by refining the grid.

2.1.4 Model and numerics

In this discretized domain, the incompressible Navier-Stokes equations are solved:

∇.~u = 0, (1)

ρ (∂~u
∂t

+ ~u.∇~u) = −∇p+ ∇.[µ(∇~u+ (∇~u)T )] + S ~ex, (2)

where ρ and µ are the constant density and the dynamic viscosity of the fluid, respectively. ~u is
the fluid velocity, p the pressure and t the time. The flow is maintained from left to right thanks
to an additional source term S in the momentum equation in the x direction. The forced unsteady
Navier-Stokes equations are solved using a fourth-order finite-volume scheme. YALES2BIO solves
the unsteady Navier-Stokes equations using a projection method. A fourth-order Runge-Kutta
scheme is used to advance the velocity field and the Deflated Preconditioned Conjugate Gradient
method (6, 9, 10) is used to solve the Poisson equation for pressure.

2.1.5 Operating point

The kinematic viscosity is set to ν = µ/ρ = 1.2 × 10−6 m2.s−1. The source term is adjusted in
order to obtain a mean velocity of the order of the ones encountered in the experiment. The bulk
velocity is 110 µm.s−1. The resulting flow is in the creeping flow regime: the Reynolds number
based on the channel height of h and the bulk velocity is approximately 0.0028. The computation
is run for several characteristic times h2/ν to obtain time-converged results. In order to guarantee
the accuracy of the solution, results were double checked by verifying that they match results
obtained using a commercial software and a creeping flow hypothesis. In addition, we verified that
the three-dimensional flow structure corresponds well to existing data on creeping flows around
corners (11).

2.2 Numerical simulations of capsules flowing around the pillar

In order to illustrate how flowing cells may interact while passing around the pillar, 2-D numerical
simulations of the dynamics of capsules are performed. Two-dimensional configurations were con-
sidered to shorten the calculation times. Some simulation parameters differ from the experimental
values. These choices were made to obtain reasonable computational times while keeping the es-
sential ingredients present in the experiment. The 2-D simulations are not an attempt to mimic
the experiment. They are to be considered as an illustration of how particles flowing around the
pillar corner may interact to explore otherwise forbidden regions of the flow. Numerical simulations
of the experiment should include accurate membrane mechanics and membrane viscosity for 3-D
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red blood cells, with potential adhesion effects, in a dense suspension and with complex geometry
in a large channel and for long characteristic times. Such simulations are out of reach of current
softwares, but we hope that the simple computations presented here will motivate groups to study
the flows of red blood cells around complex geometries using numerical simulations.

2.2.1 Geometry

The configuration of interest is the flow of inextensible capsules around a pillar, in 2-D. In that case,
the geometry and the boundary conditions correspond to the 3-D case described earlier, except that
the domain is now infinite in the z direction. The configuration is shown in figure S5(a).

Either one isolated capsule or two capsules, one behind another (as shown in figure S4), are
deposited in the flow. The capsules are initially elliptic with the large radius of 4 µm and a small
radius of 1 µm (the surface ratio). The corresponding equivalent radius (radius of the circle of
same area) is R = 2.7 µm. The reduced area (ratio of the capsule area over the area of circle of
the same perimeter) is 0.54. In the case with two capsules displayed, the initial distance is between
the capsules is 0.5 µm. Capsules are deposited with an initial distance to the wall of 0.75 µm,
just upstream of the corner. When capsules are positioned further upstream from the corner, the
wall-associated lift has time to act and capsules pass the corner far from the wall.

2.2.2 Boundary conditions

The boundary conditions correspond to what is done in the 3D simulations in the absence of
capsule, except in the z direction, which is now infinite. Non-slipping wall boundary conditions are
applied at the surface of the pillar. The numerical domaine is delimited by three pairs of periodic
boundary conditions (thin solid lines in figure S5a). As in 3D, as there are no inlets/outlets in
this configuration, the flow is maintained by imposing a constant source term, as in the previous
three-dimensional simulation.

2.2.3 Grid

Computational domains are discretized using unstructured triangular grids. They are refined in
the region where the capsules flow, where the grid resolution is of order of 0.3 µm. The membrane
is discretized with 64 markers. The order of magnitude of the grid sizes corresponds to what is
used in the numerical simulations used to validate the software in the paper by Mendez et al. (4).

2.2.4 Model

A fluid-structure interaction method dedicated to the computation of the dynamics of capsules and
vesicles under flow is implemented in the YALES2BIO flow solver (4). The Navier-Stokes flow solver
described earlier is modified to account for the presence of deformable objects. The method is based
on the immersed boundary technique (12, 13) for infinitely thin membranes, initially developed for
Cartesian fluid grids and adapted to unstructured finite-volume formulations (4). This method
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is a one-fluid method in which forced Navier-Stokes equations are solved everywhere, on a fixed
Eulerian grid:

∇.~u = 0, (3)

ρ (∂~u
∂t

+ ~u.∇~u) = −∇p+ ∇.[µ(∇~u+ (∇~u)T )] + S ~ex + ~f. (4)

In order to account for the presence of the particles, a source term ~f modeling the forces exerted by
the membrane on the fluid is added in the momentum conservation equation (Eq. 4). This force is
calculated on the membrane markers, which are tracked in a Lagrangian way, and then regularized
on the Eulerian fluid grid (see Mendez et al. (4) for numerical details). This force has an elastic
component and a bending component (14) (~f = ~F leas + ~F bend) and is applied only in the vicinity
of the membrane. The elastic component is obtained by assuming that two neighboring markers of
the membrane are linked by a Hookean spring of elastic modulus Ee. The bending component of
the force is calculated from the functional derivative of the Helfrich energy (15):

Eb = Eb

2

∫
S
κ2 dS, (5)

where Eb is the membrane bending modulus, κ the curvature (inverse of the radius of curvature;
with ~n the outward pointing normal vector to the membrane, κ = ∇.~n). Spontaneous curvature is
supposed to be zero. The associated force exerted by the membrane on the fluid reads

~F bend = Eb [12 κ
3 + ∆LB κ]~n, (6)

where ∆LB is the Laplace-Beltrami operator, ie: ∆LB = (Is∇).(Is∇) and Is = I − ~n~n (16).
The capsules deposited are actually almost inextensible and resist bending. Such an object is

often referred to as vesicle (14). In 2-D, the difference is minimal. Such 2-D objects are often used
in the literature to demonstrate physical phenomena (14, 17–20) relevant to elastic capsules, lipid
vesicles or red blood cells. Extensive validation of the solver is presented by Mendez et al. (4)

2.2.5 Operating point

In order to accelerate the computation, a bulk velocity of 18 mm.s−1 is imposed. In the region
where the particles are deposited, the shear k is such that the particle Reynolds number is k R2/ν ≈
5 × 10−3, which is small and guarantees the absence of inertial lift at the scale the capsules. The
capillary number, based on the elastic coefficient of the membrane Ee is Ca = µkR/Ee = 0.002,
which ensures that the membrane perimeter varies of less than 0.5% during the calculations. The
bending coefficient Eb is such that Eb/(EeR

2) = 0.001. The viscosity is identical inside and outside
the capsule.
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2.2.6 Control numerical experiment

A second test case with capsules is used as a control numerical experiment: it is a simple 2-D
Couette flow between two flat walls. The configuration is shown in figure S5(b). The Couette
domain is a rectangle of length 500 µm and height 100 µm. This domain is used to compare the
dynamics of capsules around a corner and along a flat wall. The model, grid resolution and the
characteristic parameters (shear rate, capillary number, Reynolds number, bending coefficient) are
strictly identical to the case of flowing capsules around a pillar, described in the former subsections.
In this Couette flow, the shear rate is constant and identical to the one seen by the capsules when
they flow along the lateral wall of the pillar.

Couette flow simulations were used as control cases, to confirm that the specific results obtained
around the pillar are related only to the flow geometry. In the Couette flow, capsules simply interact
by switching positions, as observed in computations of two interacting vesicles or capsules (21) in
the presence of a wall. The specific phenomenon shown in the paper of capsules exploring regions
very close to the pillar wall is thus the result of a combination between a geometrical singularity
and multi-body effects.
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3 Supplemental figures

inlet

outlet

Figure S1: Geometry of the microfluidic chip 3.
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flow

Figure S2: Absence of aggregation with healthy RBCs. Picture of the field of view of the
microcirculation section of the chip 1 where the triangular posts are present. After 90 minutes of
flow, only a few healthy RBCs (sample 11) adhere to the base of the posts. The scale bar is 50 µm.
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Figure S3: Aggregate formation under oxygenated conditions. Picture of the aggregates
formed 120 minutes after the initiation of the flow under only oxygenated conditions (sample 4).
The scale bar is 50 µm
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Figure S4: Schematic of the computational domain (in solid lines) used in the 3-D
simulations, over the symmetry plane z = 0. The infinite array of pillars is suggested by
the neighboring pillars shotted in dashed lines. In the third direction z (normal to the sheet), the
domain is extruded, with wall boundary conditions at z = ±15 µm.
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FLOW

(a) (b)

Figure S5: Two-dimensional configurations used for the dynamics of inextensible cap-
sules near walls. Thick solid lines are used for solid walls and thin lines for periodic boundary
conditions. Two configurations are used: the tri-periodic domain (a) and the Couette flow (b),
where the upper wall is moving at prescribed velocity. Small ellipses show the initial locations of
the capsules deposited in the flow.
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Figure S6: Temporal evolution of SRBC aggregates at the rear of pillars. Blood sample
from the fraction II, 58% HbS and hematocrit = 25 % in the channels. The blue triangles are
for the control experiment with healthy RBCs at the same hematocrit and mean cell hemoglobin
concentration.
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4 Supplemental movies
movie 1: Timelapse over 1h of aggregation of SRBCs (25% hematocrit, fraction 2, 58% HbS)
at the pillar corners, under deoxygenated conditions. The movie start 20 minutes afer the flow
has been initiated. First, two aggregates grow at the corners at the rear of a pillar, then after 60
minutes the two aggregates merge together and reach a final size of about 40 µm.
movie 2: Timelapse of SRBCs aggregation under oxygenated conditions. Oxygenated SRBCs are
more deformable due to the absence of HbS fibers. This lead to a better alignment of the SRBCs
along the the stream flow within the aggregate. Blood sample at 25% hematocrit, fraction II and
58% HbS.
movie 3: Fluctuating aggregate at the rear of a pillar. SRBCs at 25% hematocrit, 58 % HbS and
in presence of autologous plasma.
movie 4: detachment of an aggregate from the rear of a pillar. Experimental conditions : SRBCs
from the fraction II, 25% hematocrit, 63% HbS.
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