Cell Metabolism, Volume 21 ## **Supplemental Information** ## **Opa1 Overexpression Ameliorates the Phenotype** ## of Two Mitochondrial Disease Mouse Models Gabriele Civiletto, Tatiana Varanita, Raffaele Cerutti, Tatiana Gorletta, Serena Barbaro, Silvia Marchet, Costanza Lamperti, Carlo Viscomi, Luca Scorrano, and Massimo Zeviani ## **Supplemental Material Online** Figure S1, related to figure 1. Analysis of the *Ndufs4*^{-/-} and *Ndufs4*^{-/-}::*Opa*^{Tg} mouse models. - A) Western blot immunovisualization (upper panel) and densitometric analysis (lower panel) of OPA1 long (L) and Short (S) isoforms in brain mitochondria. Solid blue: WT; blue outline: Opa1^{tg}; solid red: Cox15^{sm/sm}; red outline: Cox15^{sm/sm}::Opa1^{Tg}. Error bars represent SEM. VDAC was used as a loading control. - B) Western blot immunovisualization (upper panel) and densitometric analysis (lower panel) of OPA1 forms in skeletal muscle mitochondria of WT, Opa^{Tg}, Ndufs4^{-/-}, Ndufs4^{-/-}::Opa^{Tg} mice. Solid blue: WT; blue outline: Opa1^{tg}; solid - red: $Cox15^{sm/sm}$; red outline: $Cox15^{sm/sm}$:: $Opa1^{Tg}$. Error bars represent SEM. VDAC was used as a loading control. - C) Western blot immunovisualization (upper panel) and densitometric analysis (lower panel) of OPA1 forms in heart mitochondria of WT, Opa^{Tg}, Ndufs4^{-/-}, Ndufs4^{-/-}::Opa^{Tg} mice. Solid blue: WT; blue outline: Opa1^{tg}; solid red: Cox15^{sm/sm}; red outline: Cox15^{sm/sm}::Opa1^{Tg}. Error bars represent SEM. VDAC was used as a loading control. - D) BNGE-in-gel activities of MRC CI from BNGE of digitonin-treated isolated mitochondria of WT, Opa^{Tg}, Ndufs4^{-/-}, Ndufs4^{-/-}::Opa^{Tg} samples. See main text for details. - E) Western-blot immunovisualization of MRC CI, CIII, and CIV from BNGE of digitonin-treated isolated mitochondria of WT, Opa^{Tg}, Ndufs4^{-/-}, Ndufs4^{-/-} ::Opa^{Tg} samples. See main text for details. Anti-COX1, anti-NDUFB8 and anti-UQCRC1 antibodies were used for CIV, CI, and CIII. Figure S2, related to figure 2. In vivo phenotypic characterization of Cox15^{sm/sm} and Cox15^{sm/sm}::Opa1^{Tg} mouse models - A) Means of weekly-performed treadmill tests over 5 weeks. Solid blue: WT (n=8); blue outline: $Opa1^{tg}$ (n=9); solid red: $Cox15^{sm/sm}$ (n=9); red outline: $Cox15^{sm/sm}$:: $Opa1^{Tg}$ (n=10). Error bars represent SEM. Statistical significance was calculated by unpaired, 2-tail Student's t test: **p<0.01: ***p<0.005. - B) Motor performance by treadmill tests in males (continuous lines) and females (dashed lines). Red lines: $Cox15^{sm/sm}::Opa1^{Tg}$; blue lines: $Cox15^{sm/sm}$ individuals. Asterisks refer to significant differences between $Cox15^{sm/sm}::Opa1^{Tg}$ vs $Cox15^{sm/sm}$ calculated by unpaired, 2-tail Student's t test: **p<0.01. Values between genders were not significantly different for either genotype. Error bars represent SEM. Figure S3, related to figure 6. Quantitative analyses in skeletal muscle - A) Quantification of Cox15 transcript. Solid blue: WT (n=4); blue outline: $Opa1^{tg}$ (n=4); solid red: $Cox15^{sm/sm}$ (n=4); red outline: $Cox15^{sm/sm}$:: $Opa1^{tg}$ (n=4). Error bars represent SEM. Statistical significance was calculated by unpaired, 2-tail Student's t test: ***p<0.005. - B) Quantification of mtDNA copy number. Solid blue: WT (n=4); blue outline: $Opa1^{tg}$ (n=4); solid red: $Cox15^{sm/sm}$ (n=4); red outline: $Cox15^{sm/sm}$:: $Opa1^{tg}$ (n=4). Error bars represent SEM. Statistical significance was calculated by unpaired, 2-tail Student's t test: **p<0.01; ***p<0.005. - C) Densitometric analysis of Opa1 isoforms in skeletal muscle on n=4 samples for each genotype. Error bars represent SEM. Statistical significance was calculated by unpaired, 2-tail Student's t test: *p<0.05; **p<0.01; ***p<0.005.