The American Journal of Human Genetics Supplemental Data

A Missense Mutation in KCTD17 Causes

Autosomal Dominant Myoclonus-Dystonia

Niccolo E. Mencacci, Ignacio Rubio-Agusti, Anselm Zdebik, Friedrich Asmus, Marthe H.R. Ludtmann, Mina Ryten, Vincent Plagnol, Ann-Kathrin Hauser, Sara Bandres Ciga, Conceição Bettencourt, Paola Forabosco, Deborah Hughes, Marc Soutar, Kathryn Peall, Huw R. Morris, Daniah Trabzuni, Mehmet Tekman, Horia C. Stanescu, Robert Kleta, Miryam Carecchio, Giovanna Zorzi, Nardo Nardocci, Barbara Garavaglia, Ebba Lohmann, Anne Weissbach, Christine Klein, John Hardy, Alan Pittman, Thomas Foltynie, Andrey Y. Abramov, Thomas Gasser, Kailash P. Bhatia, and Nicholas W. Wood

Wild-type

Mutant p.Arg145His

Figure S1. Immunocytochemistry in stably transfected SH-SY5 cells showing no difference between wild-type and mutant KCTD17 subcellular localization.

The mutation c.434 G>A p.(Arg145His) was inserted by recombinant PCR. Both N- and Cterminal HA tagged wild-type and mutant cDNAs were inserted with a 1-step recombinant PCR into pcDNA3.1 constructs for expression in mammalian cells. Stable SH-SY5 cells were generated by electroporating 5 µg linearized tagged WT and mutant plasmids into ~1 million cells and G418 (InvivoGen) selection at 250 mg/l over at least 4 weeks and at least 6 passages. A control cell line expressing the empty vector was obtained in parallel. After fixation with either 4% PFA in PBS or ice-cold 50% methanol/50% acetone, cells were blocked in PBS+2% BSA%, 3% normal goat serum, 1% NP-40, 0.5% sodiumdesoxycholate for 30 minutes and primary antibodies added in block diluted 1:1 with PBS at 4°C overnight. The Roche 3F10 monoclonal antibodies were used for detection of the HA tag, at 1:1000 dilution. After washing, secondary detection used Alexa-dye labelled, highly cross-absorbed anti-rat (Invitrogen, UK) in 0.5x block, with 1 mg/l DAPI. Microscopy was performed on a Zeiss confocal microscope. HA-tagged KCTD17 is shown in green.

Figure S2. Putamen *KCTD17*-containing module preservation across other brain regions.

Module preservation statistics were calculated (z score) to assess how well modules from one tissue are reproducible (or preserved) in another brain region.¹ Previously proposed thresholds were considered (z score of <2 indicates no evidence of module preservation, z score between 2 and <10 indicates weak to moderate evidence, and z score of \geq 10 indicates strong evidence). The module is poorly conserved across other brain regions, indicating its specificity to the putamen.

Chr	Position (hg19)	Gene (Transcript)	Variant	GERP score ^a	CADD C-score ^b	SIFT	Provean	PolyPhen-2 HumVar	Mutation Taster	Gene previously associated with disease?	Linkage analysis (LOD score)
1	152276386	<i>FLG</i> (NM_002016.1)	c.10976 C>T p.(Ser3659Phe)	2.48	11.15	T (0.06)	N (-0.8)	D (0.78)	P (0.99)	Yes, skin diseases (e.g. ichthyosis vulgaris, and/or eczema) ²	<-2
1	228401208	<i>OBSCN</i> (NM_052843.3)	c.1055 T>G; p.(Phe352Cys)	5.58	21	D (0)	D (-3.8)	D (0.94)	D (0.99)	Hypertrophic cardiomyopathy ³	< -2
8	133622476	<i>LRRC</i> 6 (NM_012472.4)	c.1076 A>C; p.(Lys359Thr)	3.5	15.74	D (0.01)	D (-3.1)	B (0.39)	D (0.99)	Recessive primary ciliary dyskinesia ⁴	< -3
22	37453460	<i>KCTD17</i> (NM_001282684.1)	c.434 G>A; p.(Arg145His)	4.46	28.8	D (0)	D (-4.8)	D (0.53)	D (0.99)	No	2.4

Table S1 - Summary of novel variants detected by whole-exome sequencing and shared by individuals V-3 and IV-14.

B=benign; D=deleterious/damaging/disease-causing; N=neutral; P=polymorphism; T=tolerated

^aPositive scores represent a substitution deficit and indicate that a site may be under evolutionary constraint. Negative scores indicate that a site is probably evolving neutrally. Positive scores scale with the level of constraint, such that the greater the score, the greater the level of evolutionary constraint inferred to be acting on that site.

^bC-scores greater or equal 10 indicates that the variant is predicted to be the among the 10% most deleterious substitutions that you can do to the human genome; a score of greater or equal 20 indicates the 1% most deleterious.

Exon 1 FOR	AGGCGCGGACTACAGCTC
Exon 1 REV	CCACGGCAATGGGTACATC
Exon 2 FOR	TCTCCCTCCACTCTCCTTC
Exon 2 REV	TCCTGGTTGTCCAAATGG
Exon 3 FOR	GGAGGGAACAAGAGGAGAATG
Exon 3 REV	TCCCAACCTCCTCTGCTTC
Exon 4 FOR	TCTTCTTTGGGTATGTTGCG
Exon 4 REV	TGGTCAGAGGCTAGGAGGTC
Exon 5 FOR	GAGGTCTGTCGTATCCTGCC
Exon 5 REV	AGAGGTGGAGGGATGGTG
Exon 6 FOR	CTTTCACCTTGCCTGAGACC
Exon 6 REV	AGGCAAGTGGCTGAGCTAAC
Exon 7 FOR	CAGGGTTAGCTCAGCCACTT
Exon 7 REV	AGGCAGGGTGCAGATGAGAT
Exon 8 FOR	TCTGTGCCCACTAACCCTG
Exon 8 REV	TCAAGAGATGAGCACCCTCC
Exon 9 FOR	CACCCGTCAATCTCCTCTC
Exon 9 REV	AGGCAGGAGTAAGTCACAGC

 Table S2. KCTD17 primers used for Sanger sequencing

Marker	Chromosomal	Genotype UK	Genotype German fomily
rs5756370	37242476	Λ	Λ
rs6000440	27251277	<u>A</u>	<u>A</u>
rs4821542	27252018	A C	
rs000483	37252318		<u>_</u>
rs2412420	27280860		A
182413429 ro4921559	27209705		
rs11705204	27220676	0 	<u>A</u>
r:0622506	27220206	A	
r::9022300	27247050	A C	G
180137440	27250991	<u> </u>	<u> </u>
189022321	27257160	G	<u> </u>
184821370	27262121	<u> </u>	<u> </u>
188142393	3/303121	A	A
158//100	37309148	<u> </u>	<u> </u>
rs5/5643/	3/3/3008	G	G
r\$115757	3/3810/4	G	G
rs5/564//	<u>37407527</u> 27424001	<u> </u>	A C
rs5/56492	37424991	G	
Microsatellite 19xAG	37446300	<u> </u>	<u>18/14</u>
KCTD17 c.434G>A	37453460	A	A
rs2160906	37493178	G	G
rs228924	<u>37507250</u>	A	G
rs11914132	37509087	G	G
rs228942	37524619	C	C
rs3218258	37544245	A	G
rs229483	<mark>37553619</mark>	G	A
rs12167757	37567490	G	G
rs229518	37577872	А	А
rs11913300	37580627	А	А
rs5756540	37582205	G	G
rs5756546	37589805	G	G
rs64547	37592504	A	A
rs9610680	<mark>37621951</mark>	A	<mark>G</mark>
rs8137698	<mark>37624236</mark>	G	A
rs739042	37625419	G	G
rs2285110	37628145	G	G
rs9607431	<mark>37629938</mark>	C	A
rs5995404	37632938	С	С

Table S3. Disease haplotype of the families with the *KCTD17* c.434 G>A p.(Arg145His)

SNP markers on chromosome 22 located ~0.5 Mb up- and down-stream the *KCTD17* C.434 G>A mutation were analysed and compared. In the British family, the haplotype of the identified *KCTD17* mutation was determined using MERLIN.⁵ The German case was genotyped using the same array, HumanCytoSNP-12 DNA Analysis BeadChip Kit (Illumina, San Diego). In the German case SNP phasing was possible only for homozygous alleles. The *KCTD17* c.434 G>A mutation is marked in red. All alleles where the haplotype of the UK family differs from that of the German family are highlighted in yellow. The physical position of the markers refers to the human genome assembly hg19.

^aThese values indicate the number of AG repeats

Supplemental references

- 1. Langfelder, P., Luo, R., Oldham, M.C., and Horvath, S. (2011). Is my network module preserved and reproducible? PLoS Comput Biol 7, e1001057.
- 2. Irvine, A.D., McLean, W.H., and Leung, D.Y. (2011). Filaggrin mutations associated with skin and allergic diseases. N Engl J Med 365, 1315-1327.
- Arimura, T., Matsumoto, Y., Okazaki, O., Hayashi, T., Takahashi, M., Inagaki, N., Hinohara, K., Ashizawa, N., Yano, K., and Kimura, A. (2007). Structural analysis of obscurin gene in hypertrophic cardiomyopathy. Biochem Biophys Res Commun 362, 281-287.
- 4. Kott, E., Duquesnoy, P., Copin, B., Legendre, M., Dastot-Le Moal, F., Montantin, G., Jeanson, L., Tamalet, A., Papon, J.F., Siffroi, J.P., et al. (2012). Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am J Hum Genet 91, 958-964.
- Abecasis, G.R., Cherny, S.S., Cookson, W.O., and Cardon, L.R. (2002). Merlin--rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30, 97-101.