SUPPLEMENTARY INFORMATION

Functional proteomic analysis of repressive histone methyltransferase complexes PRC2 and G9A reveals ZNF518B as a G9A regulator

Verena K. Maier¹, Caitlin M. Feeney², Jordan E. Taylor², Amanda L. Creech², Jana W. Qiao², Attila Szanto¹, Partha P. Das³, Nicholas Chevrier⁴, Catherine Cifuentes-Rojas¹, Stuart H. Orkin³, Steven A. Carr², Jacob D. Jaffe², Philipp Mertins^{2*} and Jeannie T. Lee^{1*}

SUPPLEMENTARY METHODS

Western blotting

8 µg of nuclear extracts used as input for SILAC affinity proteomics experiments were separated by 4-12% SDS-PAGE and transferred to nitrocellulose membranes. Proteins were detected with α -Ezh2 antibody (BD Transduction Laboratories, 612667), α -Ezh1 antibody (abcam, ab13633), α -Suz12 antibody (Cell Signaling Technologies, D39F6), α -G9A antibody (Perseus Proteomics, PP-A8620A-00), M2 α -FLAG antibody (Sigma-Aldrich, F7425) or α -actin antibody (Sigma-Aldrich, 2066) and HRP conjugated secondary antibodies (Promega), and were visualized by Western Lightning *Plus* ECL (PerkinElmer). Biotin-tagged proteins were detected using HRPcoupled streptavidin.

Affinity purifications in the presence of RNAse

Purifications with RNAse were conducted in parallel with no RNAse samples, but 200 µg RNAse A (Invitrogen) and 200 units RNAse T1 (Ambion) were added to the samples along with TURBO DNAse before the 25°C incubation step. Since no RNA-dependent interactors were identified, data is not shown in the main text, but can be found in the raw data table.

SUPPLEMENTARY TABLE LEGENDS

Table S1: Lists of all identified EZH2, EZH1, SUZ12 and G9A interaction partners in mouse ESCs and their stoichiometries with respect to the bait protein

Table S2: Data table of affinity proteomics mass spectrometry experiments

Table S3: List of lentiviral shRNA constructs, corresponding knock-down efficiencies in mouse ESCs and primer sequences used for measuring expression levels of target proteins

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1: Tagged transgenes were expressed at physiological or subphysiological levels in mESCs. (*a*) Western blots of nuclear extracts of $Ezh2^{-/-}$ mESCs or J1 mESCs expressing FLAGbio-tagged EZH2, EZH1 or SUZ12 probed with α -EZH2-, α -EZH1-, or α -SUZ12-antibody and of F1-2-1 mESCs expressing G9A-3xFLAG probed with α -G9A- or α -FLAG-antibody as indicated. ACTIN served as a loading control. (*b*) Western blot membrane with nuclear extracts from mESCs expressing FLAGbio-EZH2, -EZH1 or -SUZ12 probed with streptavidin-coupled HRP.

Supplementary Figure 2: SILAC affinity proteomics experiments are very reproducible. Bait pull-down to negative control protein ratios measured in individual replicates of affinity purifications with EZH2, EZH1, SUZ12 and G9A are plotted against each other (log₂ scale; below diagonal). Pearson correlation coefficients for pairwise comparisons are displayed above the diagonal. Frequency distribution histograms of the log₂ SILAC ratios are displayed on the diagonal boxes. Supplementary Figure 3: Residual mRNA expression after shRNA knock-down in J1 mESCs measured by qPCR.

Supplementary Figure 4: Effects of individual knock-downs of members of PRC2, the G9A-complex and selected interaction partners on 42 histone H3 posttranslational modification signatures were measured by global chromatin profiling. Heatmap displaying relative changes of tail modifications caused by individual knock-down with up to three different shRNAs directed against genes of interest as indicated. Empty control lentivirus and shRNA against RFP served as negative controls.

SUZ12

G9A							
		6-4-20246	-	6-4-20246	-	6-4-20246	; •
	Rep1	0.85	0.90	0.80	0.75	0.71	4 0 0 0 7 4
		Rep2	0.83	0.87	0.80	0.81	-
			Rep3	0.80	0.75	0.70	9 1 0 0 0 1
	X		A	Rep4	0.76	0.82	- q
		X	N.		Rep5	0.82	9 1 0 0 0 1 2
	, A		A			Rep6	4
-	6-4-20240	3 -	6-4-20246	; -	6 -4 -2 0 2 4 6	1	

-6-4-2024

-4 -2 0 2

-6-4-202

0.64

0.74

0.75

0.85

Rep5

-6-4-2024

Supplementary Figure 3

Residual expression after knock-down

Percent residual expression

100

50

0

